Journal Home > Volume 10 , Issue 9

A simple yet general one-step solvothermal method is applied to synthesize sub-7 nm monodispersed single-crystal NiPt2 nanoparticles (NPs) with the morphology of truncated octahedrons in the alloying state of disordered atomic arrangements. The effective magnetic moments of these NPs exhibit an anomalous temperature dependency, increasing from approximately 0.9 μB/atom at 15 K to 1.9 μB/atom at 300 K. This is an increase by a factor of more than three compared with bulk Ni. On the basis of experiments involving X-ray absorption near-edge spectroscopy of the L3 edge for Pt and density functional theory calculations, the observed novel magnetism enhancement and its anomalous temperature dependence are attributed to the electron transfer arising from the thermal-activation effects.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Giant enhancement and anomalous temperature dependence of magnetism in monodispersed NiPt2 nanoparticles

Show Author's information Aixian Shan1,2Chinping Chen1( )Wei Zhang3Daojian Cheng3( )Xi Shen4Richeng Yu4( )Rongming Wang2( )
Department of PhysicsPeking UniversityBeijing100871China
State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
Beijing National Laboratory for Condensed Matter PhysicsInstitute of Physics Chinese Academy of SciencesBeijing100190China
School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijing100083China

Abstract

A simple yet general one-step solvothermal method is applied to synthesize sub-7 nm monodispersed single-crystal NiPt2 nanoparticles (NPs) with the morphology of truncated octahedrons in the alloying state of disordered atomic arrangements. The effective magnetic moments of these NPs exhibit an anomalous temperature dependency, increasing from approximately 0.9 μB/atom at 15 K to 1.9 μB/atom at 300 K. This is an increase by a factor of more than three compared with bulk Ni. On the basis of experiments involving X-ray absorption near-edge spectroscopy of the L3 edge for Pt and density functional theory calculations, the observed novel magnetism enhancement and its anomalous temperature dependence are attributed to the electron transfer arising from the thermal-activation effects.

Keywords: magnetism, density functional theory calculations, NiPt2 nanoparticles, X-ray absorption near-edge spectroscopy

References(29)

1

Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.

2

Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquidphase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.

3

Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

4

Shan, A. X.; Chen, Z. C.; Li, B. Q.; Chen, C. P.; Wang, R. M. Monodispersed, ultrathin NiPt hollow nanospheres with tunable diameter and composition via a green chemical synthesis. J. Mater. Chem. A 2015, 3, 1031–1036.

5

Dubau, L.; Nelayah, J.; Moldovan, S.; Ersen, O.; Bordet, P.; Drnec, J.; Asset, T.; Chattot, R.; Maillard, F. Defects do catalysis: CO monolayer oxidation and oxygen reduction reaction on hollow PtNi/C nanoparticles. ACS Catal. 2016, 6, 4673–4684.

6

Alloyeau, D.; Ricolleau, C.; Mottet, C.; Oikawa, T.; Langlois, C.; Le Bouar, Y.; Braidy, N.; Loiseau, A. Size and shape effects on the order–disorder phase transition in CoPt nanoparticles. Nat. Mater. 2009, 8, 940–946.

7

Chiang, I. C.; Chen, D. H. Synthesis of monodisperse FeAu nanoparticles with tunable magnetic and optical properties. Adv. Funct. Mater. 2007, 17, 1311–1316.

8

Beille, J.; Bloch, D.; Besnus, M. J. Itinerant ferromagnetism and susceptibility of nickel-platinum alloys. J. Phys. F: Metal. Phys. 1974, 4, 1275–1284.

9

Parra, R. E.; Cable, J. W. Neutron study of magneticmoment distribution in Ni-Pt alloys. Phys. Rev. B 1980, 21, 5494–5504.

10

Alberts, H. L.; Beille, J.; Bloch, D.; Wohlfarth, E. P. Ferromagnetic properties at high fields and high-pressures of nickel-platinum alloys near the critical concentration for ferromagnetism. Phys. Rev. B 1974, 9, 2233–2243.

11

Kumar, U.; Mukhopadhyay, P. K.; Sanyal, B.; Eriksson, O.; Nordblad, P.; Paudyal, D.; Tarafder, K.; Mookerjee, A. Experimental and theoretical study of annealed Ni-Pt alloys. Phys. Rev. B 2006, 74, 064401.

12

Kumar, U.; Padmalekha, K. G.; Mukhopadhyay, P. K.; Paudyal, D.; Mookerjee, A. Magnetic transition in NiPt alloy systems: Experiment and theory. J. Magn. Magn. Mater. 2005, 292, 234–240.

13

Ahrenstorf, K.; Albrecht, O.; Heller, H.; Kornowski, A.; Görlitz, D.; Weller, H. Colloidal synthesis of NixPt1–x nanoparticles with tuneable composition and size. Small 2007, 3, 271–274.

14

Zitoun, D.; Respaud, M.; Fromen, M. C.; Casanove, M. J.; Lecante, P.; Amiens, C.; Chaudret, B. Magnetic enhancement in nanoscale CoRh particles. Phys. Rev. Lett. 2002, 89, 037203.

15

Zhang, D. F.; Zhang, Q.; Huang, W. F.; Guo, L.; Chen, W. M.; Chu, W. S.; Chen, C. P.; Wu, Z. Y. Low-temperature fabrication of Au-Co cluster mixed nanohybrids with high magnetic moment of Co. ACS Appl. Mater. Interfaces 2012, 4, 5643–5649.

16

Dupuis, V.; Khadra, G.; Linas, S.; Hillion, A.; Gragnaniello, L.; Tamion, A.; Tuaillon-Combes, J.; Bardotti, L.; Tournus, F.; Otero, E. et al. Magnetic moments in chemically ordered mass-selected CoPt and FePt clusters. J. Magn. Magn. Mater. 2015, 383, 73–77.

17

Bhagat, S. M.; Lucas, C. W., Jr. New technique for measurement of the temperature dependence of the saturation magnetization-nickel. Rev. Sci. Instrum. 1968, 39, 255–256.

18

Wu, H.; Zhang, R.; Liu, X. X.; Lin, D. D.; Pan, W. Electrospinning of Fe, Co, and Ni nanofibers: Synthesis, assembly, and magnetic properties. Chem. Mater. 2007, 19, 3506–3511.

19

Neugebauer, C. A. Temperature dependence of the saturation magnetization of nickel films of thickness less than 100a. J. Appl. Phys. 1960, 31, S152–S153.

20

Huang, L. F.; Shan, A. X.; Li, Z. P.; Chen, C. P.; Wang, R. M. Phase formation, magnetic and optical properties of epitaxially grown icosahedral Au@Ni nanoparticles with ultrathin shells. CrystEngComm 2013, 15, 2527–2531.

21

Billas, I. M. L.; Châtelain, A.; De Heer, W. A. Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science 1994, 265, 1682–1684.

22

Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

23

Wilhelm, F.; Poulopoulos, P.; Srivastava, P.; Wende, H.; Farle, M.; Baberschke, K.; Angelakeris, M.; Flevaris, N. K.; Grange, W.; Kappler, J. P. et al. Magnetic anisotropy energy and the anisotropy of the orbital moment of Ni in Ni/Pt multilayers. Phys. Rev. B 2000, 61, 8647–8650.

24

Mandal, M.; Kundu, S.; Sau, T. K.; Yusuf, S. M.; Pal, T. Synthesis and characterization of superparamagnetic Ni-Pt nanoalloy. Chem. Mater. 2003, 15, 3710–3715.

25

He, L.; Zheng, W. Z.; Zhou, W.; Du, H. L.; Chen, C. P.; Guo, L. Size-dependent magnetic properties of nickel nanochains. J. Phys. : Condens. Matter 2007, 19, 036216.

26

Zhou, W.; He, L.; Cheng, R.; Guo, L.; Chen, C. P.; Wang, J. L. Synthesis of Ni nanochains with various sizes: The magnetic and catalytic properties. J. Phys. Chem. C 2009, 113, 17355–17358.

27

Zhao, F. F.; Liu, C.; Wang, P.; Huang, S. P.; Tian, H. P. First-principles investigations of the structural, electronic, and magnetic properties of Pt13–n Nin clusters. J. Alloys Compd. 2013, 577, 669–676.

28

Nlebedim, I. C.; Melikhov, Y.; Jiles, D. C. Temperature dependence of magnetic properties of heat treated cobalt ferrite. J. Appl. Phys. 2014, 115, 043903.

29

Chen, W. M.; Chen, C. P.; Guo, L. Field-dependent lowfield enhancement in effective paramagnetic moment with nanoscaled Co3O4. J. Appl. Phys. 2010, 108, 073907.

File
nr-10-9-3238_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 February 2017
Revised: 20 April 2017
Accepted: 23 April 2017
Published: 27 June 2017
Issue date: September 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

Authors acknowledge Dr. Lirong Zheng for his XANES experimental support at the XAFS station in 1W1B beamline of BSRF and useful discussion. This work is supported by the National Natural Science Foundation of China (Nos. 11674008, 11674023, 21576008, 91334203, 51371015 and 51331002), the Beijing Natural Science Foundation (No. 2142018) and Beijing Municipal Science and Technology Project (No. Z17111000220000).

Return