Journal Home > Volume 10 , Issue 12

Energy storage systems are selected depending on factors such as storage capacity, available power, discharge time, self-discharge, efficiency, or durability. Additional parameters to be considered are safety, cost, feasibility, and environmental aspects. Sodium-based batteries (Na-S, NaNiCl2) typically require operation temperatures of 300-350 ℃. The high operating temperatures substantially increase the operating costs and raise safety issues. This updated review describes the state-of-the-art materials for high-temperature sodium batteries and the trends towards the development and optimization of intermediate and low-temperature devices. Recent advances in inorganic solid electrolytes, glass-ceramic electrolytes, and polymer solid electrolytes are of immense importance in all-solid-state sodium batteries. Systems such as Na+ super ionic conductor (NASICON, Na1+xZr2P3-xSixO12 (0 ≤ x ≤ 3)), glass-ceramic 94Na3PS4·6Na4SiS4, and polyethylene oxide (PEO)-sodium triflate (NaCF3SO3) are also discussed. Room temperature ionic liquids (RTILs) are also included as novel electrolyte solvents. This update discusses the progress of on-going strategies to enhance the conductivity, optimize the electrolyte/electrode interface, and improve the cell design of emerging technologies. This work aims to cover the recent advances in electrode and electrolyte materials for sodium-sulfur and sodium-metal-halide (zeolite battery research Africa project (ZEBRA)) batteries for use at high and intermediate temperatures.


menu
Abstract
Full text
Outline
About this article

Challenges and perspectives on high and intermediate-temperature sodium batteries

Show Author's information Karina B. Hueso1Verónica Palomares1Michel Armand2Teófilo Rojo1,2( )
Inorganic Chemistry DepartmentUniversity of the Basque Country UPV/EHUP.O. Box. 64448080Bilbao, Spain
CIC ENERGIGUNEParque Tecnológico de álavaAlbert Einstein 48ED.CIC01510Mi?ano, Spain

Abstract

Energy storage systems are selected depending on factors such as storage capacity, available power, discharge time, self-discharge, efficiency, or durability. Additional parameters to be considered are safety, cost, feasibility, and environmental aspects. Sodium-based batteries (Na-S, NaNiCl2) typically require operation temperatures of 300-350 ℃. The high operating temperatures substantially increase the operating costs and raise safety issues. This updated review describes the state-of-the-art materials for high-temperature sodium batteries and the trends towards the development and optimization of intermediate and low-temperature devices. Recent advances in inorganic solid electrolytes, glass-ceramic electrolytes, and polymer solid electrolytes are of immense importance in all-solid-state sodium batteries. Systems such as Na+ super ionic conductor (NASICON, Na1+xZr2P3-xSixO12 (0 ≤ x ≤ 3)), glass-ceramic 94Na3PS4·6Na4SiS4, and polyethylene oxide (PEO)-sodium triflate (NaCF3SO3) are also discussed. Room temperature ionic liquids (RTILs) are also included as novel electrolyte solvents. This update discusses the progress of on-going strategies to enhance the conductivity, optimize the electrolyte/electrode interface, and improve the cell design of emerging technologies. This work aims to cover the recent advances in electrode and electrolyte materials for sodium-sulfur and sodium-metal-halide (zeolite battery research Africa project (ZEBRA)) batteries for use at high and intermediate temperatures.

Keywords: batteries, high-temperature, intermediate-temperature, sodium, electrolytes

References(164)

1

Kim, Y.; Koh, J.; Xie, Q.; Wang, Y. Z.; Chang, N.; Pedram, M. A scalable and flexible hybrid energy storage system design and implementation. J. Power Sources 2014, 255, 410-422.

2

Ellis, B. L.; Nazar, L. F. Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 2012, 16, 168-177.

3

Epstein, M. Electrochemical storage of thermal energy. U.S. Patent 2014033712, Mar 6, 2014.

4

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.

5

Hayashi, A.; Noi, K.; Sakuda, A.; Tatsumisago, M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 2012, 3, 856.

6

Menictas, C.; Skyllas-Kazacos, M.; Mariana, L. T. Advances in Batteries for Medium and Large-Scale Energy Storage; Elsevier: Oxford, UK, 2015.

DOI
7

Reddy, T. B. Linden's Handbook of Batteries, 4th ed.; McGraw-Hill: New York, USA, 2011.

8

Geurin, S. O.; Barnes, A. K.; Balda, J. C. Smart grid applications of selected energy storage technologies. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 2012, pp 1-8.

9

Sparacino, A. R.; Reed, G. F.; Kerestes, R. J.; Grainger, B. M.; Smith, Z. T. Survey of battery energy storage systems and modeling techniques. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 2012, pp 1-8.

10

Garche, J.; Dyer, C. K.; Moseley, P. T.; Ogumi, Z.; Rand, D. A. J.; Scrosati, B. Encyclopedia of Electrochemical Power Sources; Elsevier: Amsterdam, the Netherlands, 2009.

11

Kummer, J. T.; Weber, N. Battery having a molten alkali metal anode and a molten sulfur cathode. U.S. Patent 3413150, Nov 26, 1968.

12

Abraham, K. M.; Rauh, R. D.; Brummer, S. B. A low temperature Na-S battery incorporating A soluble S cathode. Electrochim. Acta 1978, 23, 501-507.

13

Sudworth, J. L. The Sodium Sulfur Battery; Chapman & Hall: London, UK, 1985.

14

Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577-3613.

15

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.

16

Jones, I. W. Recent advances in the development of sodium-sulphur batteries for load levelling and motive power applications. In International Symposium on Solid Ionic and Ionic-Electronic Conductors; Armstrong, R. D., Ed.; Elsevier: Amsterdam, the Netherlands, 1977; pp 681-688.

DOI
17
Ford gives Na-S battery details. Chem. Eng. News 1966, 44, 32-33.https://doi.org/10.1021/cen-v044n042.p032a
DOI
18

Min, J. K.; Lee, C. -H. Numerical study on the thermal management system of a molten sodium-sulfur battery module. J. Power Sources 2012, 210, 101-109.

19

Hueso, K. B.; Armand, M.; Rojo, T. High temperature sodium batteries: Status, challenges and future trends. Energy Environ. Sci. 2013, 6, 734-749.

20

Hammond, G. P.; Hazeldine, T. Indicative energy technology assessment of advanced rechargeable batteries. Appl. Energy 2015, 138, 559-571.

21

Gerssen-Gondelach, S. J.; Faaij, A. P. C. Performance of batteries for electric vehicles on short and longer term. J. Power Sources 2012, 212, 111-129.

22

Minami, T.; Hayashi, A.; Tatsumisago, M. Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries. Solid State Ion. 2006, 177, 2715-2720.

23

Ohta, N.; Takada, K.; Zhang, L.; Ma, R.; Osada, M.; Sasaki, T. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv. Mater. 2006, 18, 2226-2229.

24

Tanibata, N.; Matsuyama, T.; Hayashi, A.; Tatsumisago, M. All-solid-state sodium batteries using amorphous TiS3 electrode with high capacity. J. Power Sources 2015, 275, 284-287.

25

Wei, X. L.; Cao, Y.; Lu, L.; Yang, H.; Shen, X. D. Synthesis and characterization of titanium doped sodium beta″-alumina. J. Alloys Compd. 2011, 509, 6222-6226.

26

Tatsumisago, M.; Nagao, M.; Hayashi, A. Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. J. Asian Ceram. Soc. 2013, 1, 17-25.

27

Sangster, J.; Pelton, A. D. The Na-S (sodium-sulfur) system. J. Phase Equilibria 1997, 18, 89-96.

28

Tang, T. B.; Chaudhri, M. M. Electrical degradation of β-alumina. J. Mater. Sci. 1982, 17, 157-163.

29

Lu, X. C.; Kirby, B. W.; Xu, W.; Li, G. S.; Kim, J. Y.; Lemmon, J. P.; Sprenkle, V. L.; Yang, Z. G. Advanced intermediate-temperature Na-S battery. Energy Env iron. Sci. 2013, 6, 299-306.

30

Oshima, T.; Kajita, M.; Okuno, A. Development of sodium-sulfur batteries. Int. J. Appl. Ceram. Technol. 2005, 1, 269-276.

31

Gordon, J.; Watkins, J. Sodium-sulfur battery with a substantially non-porous membrane and enhanced cathode utilization. European Patent Application EP2409354, March 16, 2010.

32

Yu, X. W.; Manthiram, A. Highly reversible room-temperature sulfur/long-chain sodium polysulfide batteries. J. Phys. Chem. Lett. 2014, 5, 1943-1947.

33

Xin, S.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. A high-energy room-temperature sodium-sulfur battery. Adv. Mater. 2014, 26, 1261-1265.

34

Lu, X. C.; Li, G. S.; Kim, J. Y.; Mei, D. H.; Lemmon, J. P.; Sprenkle, V. L.; Liu, J. Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage. Nat. Commun. 2014, 5, 4578.

35

Crompton, T. R. Battery Reference Book, 3rd ed.; Newnes: Oxford, UK, 2000.

36

Park, C. W.; Ryu, H. S.; Kim, K. W.; Ahn, J. H.; Lee, J. Y.; Ahn, H. J. Discharge properties of all-solid sodium-sulfur battery using poly (ethylene oxide) electrolyte. J. Power Sources 2007, 165, 450-454.

37

Park, C. W.; Ahn, J. H.; Ryu, H. S.; Kim, K. W.; Ahn, H. J. Room-temperature solid-state sodium/sulfur battery. Electrochem. Solid-State Lett. 2006, 9, A123-A125.

38

Kim, J. S.; Ahn, H. J.; Kim, I. P.; Kim, K. W.; Ahn, J. H.; Park, C. W.; Ryu, H. S. The short-term cycling properties of Na/PVdF/S battery at ambient temperature. J. Solid State Electrochem. 2008, 12, 861-865.

39

Wang, J. L.; Yang, J.; Nuli, Y.; Holze, R. Room temperature Na/S batteries with sulfur composite cathode materials. Electrochem. Commun. 2007, 9, 31-34.

40

Ryu, H.; Kim, T.; Kim, K.; Ahn, J. H.; Nam, T.; Wang, G. X.; Ahn, H. J. Discharge reaction mechanism of room-temperature sodium-sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte. J. Power Sources 2011, 196, 5186-5190.

41

Wei, S. Y.; Xu, S. M.; Agrawral, A.; Choudhury, S.; Lu, Y. Y.; Tu, Z. Y.; Ma, L.; Archer, L. A. A stable room-temperature sodium-sulfur battery. Nat. Commun. 2016, 7, 11722.

42

Yu, X. W.; Manthiram, A. Performance enhancement and mechanistic studies of room-temperature sodium-sulfur batteries with a carbon-coated functional nafion separator and a Na2S/activated carbon nanofiber cathode. Chem. Mater. 2016, 28, 896-905.

43

Adelhelm, P.; Hartmann, P.; Bender, C. L.; Busche, M.; Eufinger, C.; Janek, J. From lithium to sodium: Cell chemistry of room temperature sodium-air and sodium-sulfur batteries. Beilstein J. Nanotechnol. 2015, 6, 1016-1055.

44

Steudel, R.; Steudel, Y. Polysulfide chemistry in sodium-sulfur batteries and related systems-A computational study by G3X(MP2) and PCM calculations. Chem. -Eur. J. 2013, 19, 3162-3176.

45

Cleaver, B.; Davies, A. J. Properties of fused polysulphides-IV. Cryoscopic studies on solutions of alkali metal polysulphides in potassium thiocyanate. Electrochim. Acta 1973, 18, 741-745.

46

Föppl, F.; Busmann, E.; Frorath, F. K. Die Kristallstrukturen von α-Na2S2 und K2S2, β-Na2S2 und Na2Se2. Z. Anorg. Allgem. Chem. 1962, 314, 12-20.

47

Tegman, R. The crystal structure of sodium tetrasulphide, Na2S4. Acta Crystallogr. B 1973, 29, 1463-1469.

48

Momida, H.; Yamashita, T.; Oguchi, T. First-principles study on structural and electronic properties of α-S and Na-S crystals. J. Phys. Soc. Jpn. 2014, 83, 124713.

49

Wen, Z. Y.; Hu, Y. Y.; Wu, X. W.; Han, J. D.; Gu, Z. H. Main challenges for high performance NAS battery: Materials and interfaces. Adv. Funct. Mater. 2013, 23, 1005-1018.

50

Min, J. K.; Stackpool, M.; Shin, C. H.; Lee, C. H. Cell safety analysis of a molten sodium-sulfur battery under failure mode from a fracture in the solid electrolyte. J. Power Sources 2015, 293, 835-845.

51

Jung, K.; Lee, S.; Kim, G.; Kim, C. S. Stress analyses for the glass joints of contemporary sodium sulfur batteries. J. Power Sources 2014, 269, 773-782.

52

Ha, S.; Kim, J. K.; Choi, A.; Kim, Y.; Lee, K. T. Sodium-metal halide and sodium-air batteries. ChemPhysChem 2014, 15, 1971-1982.

53

Kluiters, E. C.; Schmal, D.; ter Veen, W. R.; Posthumus, K. J. C. M. Testing of a sodium/nickel chloride (ZEBRA) battery for electric propulsion of ships and vehicles. J. Power Sources 1999, 80, 261-264.

54

Sudworth, J. L. Zebra batteries. J. Power Sources 1994, 51, 105-114.

55

Van Zyl, A. Review of the zebra battery system development. Solid State Ion. 1996, 86-88, 883-889.

56

Dustmann, C. H. Advances in ZEBRA batteries. J. Power Sources 2004, 127, 85-92.

57

Li, G. S.; Lu, X. C.; Coyle, C. A.; Kim, J. Y.; Lemmon, J. P.; Sprenkle, V. L.; Yang, Z. G. Novel ternary molten salt electrolytes for intermediate-temperature sodium/nickel chloride batteries. J. Power Sources 2012, 220, 193-198.

58
Koh, W.; Lee, J.; Kim, J.; Lee, S.; Park, D.; Lee, H.; Robins, M.; Eccleston, A.; Bhavaraju, S.; Kim, J. Development of molten sodium battery using NaSICON solid electrolyte membrane for stationary and large-scale electrical energy storage system[Online]. http://ma.ecsdl.org/content/MA2014-02/9/624.abstract (accessed Jan 11, 2017).
59

Park, H.; Jung, K.; Nezafati, M.; Kim, C. -S.; Kang, B. Sodium ion diffusion in Nasicon (Na3Zr2Si2PO12) solid electrolytes: Effects of excess sodium. Appl. Mater. Interfaces 2016, 8, 27814-27824.

60

Munshi, M. Z. A. Handbook of Solid State Batteries & Capacitors; World Scientific Pub. : River Edge, NJ, USA, 1995.

DOI
61

Hwang, T. H.; Jung, D. S.; Kim, J. -S.; Kim, B. G.; Choi, J. W. One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature. Nano Lett. 2013, 13, 4532-4538.

62

Yu, X. W.; Manthiram, A. Na2S-carbon nanotube fabric electrodes for room-temperature sodium-sulfur batteries. Chem. -Eur. J. 2015, 21, 4233-4237.

63

Yu, X. W.; Manthiram, A. Room-temperature sodium-sulfur batteries with liquid-phase sodium polysulfide catholytes and binder-free multiwall carbon nanotube fabric electrodes. J. Phys. Chem. C 2014, 118, 22952-22959.

64

Wang, Y. X.; Yang, J. P.; Lai, W. H.; Chou, S. L.; Gu, Q. F.; Liu, H. K.; Zhao, D. Y.; Dou, S. X. Achieving high-performance room-temperature sodium-sulfur batteries with S@interconnected mesoporous carbon hollow nanospheres. J. Am. Chem. Soc. 2016, 138, 16576-16579.

65

Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512-517.

66

Qiang, Z.; Chen, Y. M.; Xia, Y. F.; Liang, W. F.; Zhu, Y.; Vogt, B. D. Ultra-long cycle life, low-cost room temperature sodium-sulfur batteries enabled by highly doped (N, S) nanoporous carbons. Nano Energy 2017, 32, 59-66.

67

Chen, Y. -M.; Liang, W. F.; Li, S.; Zou, F.; Bhaway, S. M.; Qiang, Z.; Gao, M.; Vogt, B. D.; Zhu, Y. A nitrogen doped carbonized metal-organic framework for high stability room temperature sodium-sulfur batteries. J. Mater. Chem. A 2016, 4, 12471-12478.

68

Kim, I.; Park, J. -Y.; Kim, C. H.; Park, J. -W.; Ahn, J. -P.; Ahn, J. -H.; Kim, K. -W.; Ahn, H. -J. A room temperature Na/S battery using a β″ alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode. J. Power Sources 2016, 301, 332-337.

69

Yu, X. W.; Manthiram, A. Capacity enhancement and discharge mechanisms of room-temperature sodium-sulfur batteries. ChemElectroChem 2014, 1, 1275-1280.

70

Fan, L.; Ma, R. F.; Yang, Y. H.; Chen, S. H.; Lu, B. G. Covalent sulfur for advanced room temperature sodium-sulfur batteries. Nano Energy 2016, 28, 304-310.

71

Zheng, S. Y.; Han, P.; Han, Z.; Li, P.; Zhang, H. J.; Yang, J. H. Nano-copper-assisted immobilization of sulfur in high-surface-area mesoporous carbon cathodes for room temperature Na-S batteries. Adv. Energy Mater. 2014, 4, 1400226.

72

Wenzel, S.; Metelmann, H.; Raiβ, C.; Dürr, A. K.; Janek, J.; Adelhelm, P. Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte. J. Power Sources 2013, 243, 758-765.

73

Li, G. S.; Lu, X. C.; Kim, J. Y.; Lemmon, J. P.; Sprenkle, V. L. Cell degradation of a Na-NiCl2 (ZEBRA) battery. J. Mater. Chem. A 2013, 1, 14935-14935.

74

Ratke, L.; Voorhees, P. W. Growth and Coarsening: Ostwald Ripening in Material Processing; Springer: Berlin, Heidelberg, 2002.

DOI
75

Prakash, J.; Redey, L.; Vissers, D. R. Electrochemical behavior of nonporous Ni/NiCl2 electrodes in chloroaluminate melts. J. Electrochem. Soc. 2000, 147, 502-507.

76

Javadi, T.; Petric, A. Thermodynamic analysis of reaction products observed in ZEBRA cell cathodes. J. Electrochem. Soc. 2011, 158, A700-A704.

77

Bowden, M. E.; Alvine, K. J.; Fulton, J. L.; Lemmon, J. P.; Lu, X. C.; Webb-Robertson, B. -J.; Heald, S. M.; Balasubramanian, M.; Mortensen, D. R.; Seidler, G. T. et al. X-ray absorption measurements on nickel cathode of sodium-beta alumina batteries: Fe-Ni-Cl chemical associations. J. Power Sources 2014, 247, 517-526.

78

Li, G. S.; Lu, X. C.; Kim, J. Y.; Engelhard, M. H.; Lemmon, J. P.; Sprenkle, V. L. The role of FeS in initial activation and performance degradation of Na-NiCl2 batteries. J. Power Sources 2014, 272, 398-403.

79

Lu, X. C.; Li, G. S.; Kim, J. Y.; Lemmon, J. P.; Sprenkle, V. L.; Yang, Z. G. A novel low-cost sodium-zinc chloride battery. Energy Environ. Sci. 2013, 6, 1837-1843.

80

Li, G. S.; Lu, X. C.; Kim, J. Y.; Viswanathan, V. V.; Meinhardt, K. D.; Engelhard, M. H.; Sprenkle, V. L. An advanced Na-FeCl2 ZEBRA battery for stationary energy storage application. Adv. Energy Mater. 2015, 5, 1500357.

81

Hu, Y. Y.; Wen, Z. Y.; Wu, X. W. Porous iron oxide coating on β″-alumina ceramics for Na-based batteries. Solid State Ion. 2014, 262, 133-137.

82

Li, G. S.; Lu, X. C; Kim, J. Y.; Lemmon, J. P.; Sprenkle, V. L. Improved cycling behavior of ZEBRA battery operated at intermediate temperature of 175 ℃. J. Power Sources 2014, 249, 414-417.

83

Jung, K.; Heo, H. -J.; Lee, J. -H.; Park, Y. -C.; Kang, C. -Y. Enhanced corrosion resistance of hypo-eutectic Al-1Mg-xSi alloys against molten sodium attack in high temperature sodium sulfur batteries. Corros. Sci. 2015, 98, 748-757.

84

Lee, D. -D.; Kim, J. -H.; Kim, Y. -H. The relative stability of β and β″-phases in Na2O-Al2O3 beta alumina. J. Mater. Sci. 1990, 25, 2897-2900.

85

Zhu, C. F.; Xue, J. H.; Ji, G. H. Effect of Na2O content on properties of beta alumina solid electrolytes. Mater. Sci. Semicond. Process. 2015, 31, 487-492.

86

Koganei, K.; Oyama, T.; Inada, M.; Enomoto, N.; Hayashi, K. C-axis oriented β″-alumina ceramics with anisotropic ionic conductivity prepared by spark plasma sintering. Solid State Ion. 2014, 267, 22-26.

87

Kim, J. Y.; Canfield, N. L.; Bonnett, J. F.; Sprenkle, V. L.; Jung, K.; Hong, I. A duplex β"-Al2O3 solid electrolyte consisting of a thin dense layer and a porous substrate. Solid State Ion. 2015, 278, 192-197.

88

Zhang, G. X.; Wen, Z. Y.; Wu, X. W.; Zhang, J. C.; Ma, G. Q.; Jin, J. Sol-gel synthesis of Mg2+ stabilized Na-β″/β-Al2O3 solid electrolyte for sodium anode battery. J. Alloys Compd. 2014, 613, 80-86.

89

Yang, L. -P.; Shan, S. J.; Wei, X. L.; Liu, X. M.; Yang, H.; Shen, X. D. The mechanical and electrical properties of ZrO2-TiO2-Na-β/β″-alumina composite electrolyte synthesized via a citrate sol-gel method. Ceram. Int. 2014, 40, 9055-9060.

90

Ahmadu, U. NASICON: Synthesis, structure and electrical characterization. In Advanced Sensor and Detection Materials; Tiwari, A.; Demir, M. M., Eds.; Scrivener Publishing: Beverly, MA, USA, 2014; pp 265-308.

91

Kim, J.; Jo, S. H.; Bhavaraju, S.; Eccleston, A.; Kang, S. O. Low temperature performance of sodium-nickel chloride batteries with NaSICON solid electrolyte. J. Electroanal. Chem. 2015, 759, 201-206.

92

Noguchi, Y.; Kobayashi, E.; Plashnitsa, L. S.; Okada, S.; Yamaki, J. Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds. Electrochim. Acta 2013, 101, 59-65.

93

Lalère, F.; Leriche, J. B.; Courty, M.; Boulineau, S.; Viallet, V.; Masquelier, C.; Seznec, V. An all-solid state NASICON sodium battery operating at 200 ℃. J. Power Sources 2014, 247, 975-980.

94

Roy, S.; Kumar, P. P. Influence of Cationic ordering on ion transport in NASICONs: Molecular dynamics study. Solid State Ion. 2013, 253, 217-222.

95

Honma, T.; Okamoto, M.; Togashi, T.; Ito, N.; Shinozaki, K.; Komatsu, T. Electrical conductivity of Na2O-Nb2O5-P2O5 glass and fabrication of glass-ceramic composites with NASICON type Na3Zr2Si2PO12. Solid State Ion. 2015, 269, 19-23.

96

Bell, N. S.; Edney, C.; Wheeler, J. S.; Ingersoll, D.; Spoerke, E. D. The influences of excess sodium on low-temperature NaSICON synthesis. J. Am. Ceram. Soc. 2014, 97, 3744-3748.

97

Park, H.; Jung, K.; Nezafati, M.; Kim, C. -S.; Kang, B. Sodium ion diffusion in nasicon (Na3Zr2Si2PO12) solid electrolytes: Effects of excess sodium. ACS Appl. Mater. Interfaces 2016, 8, 27814-27824.

98

Tatsumisago, M.; Hayashi, A. Sulfide glass-ceramic electrolytes for all-solid-state lithium and sodium batteries. Int. J. Appl. Glass Sci. 2014, 5, 226-235.

99

Hayashi, A.; Noi, K.; Tanibata, N.; Nagao, M.; Tatsumisago, M. High sodium ion conductivity of glass-ceramic electrolytes with cubic Na3PS4. J. Power Sources 2014, 258, 420-423.

100

Noi, K.; Hayashi, A.; Tatsumisago, M. Structure and properties of the Na2S-P2S5 glasses and glass-ceramics prepared by mechanical milling. J. Power Sources 2014, 269, 260-265.

101

Tanibata, N.; Noi, K.; Hayashi, A.; Kitamura, N.; Idemoto, Y.; Tatsumisago, M. X-ray crystal structure analysis of sodium-ion conductivity in 94 Na3PS4·6Na4SiS4 glass-ceramic electrolytes. ChemElectroChem 2014, 1, 1130-1132.

102

Tanibata, N.; Noi, K.; Hayashi, A.; Tatsumisago, M. Preparation and characterization of highly sodium ion conducting Na3PS4-Na4SiS4 solid electrolytes. RSC Adv. 2014, 4, 17120-17123.

103

Tanibata, N.; Hayashi, A.; Tatsumisago, M. Improvement of rate performance for all-solid-state Na15Sn4/amorphous TiS3 cells using 94Na3PS4·6Na4SiS4 glass-ceramic electrolytes. J. Electrochem. Soc. 2015, 162, A793-A795.

104

Kandagal, V. S.; Bharadwaj, M. D.; Waghmare, U. V. Theoretical prediction of a highly conducting solid electrolyte for sodium batteries: Na10GeP2S12. J. Mater. Chem. A 2015, 3, 12992-12999.

105

Kim, S. K.; Mao, A.; Sen, S.; Kim, S. Fast Na-ion conduction in a chalcogenide glass-ceramic in the ternary system Na2Se-Ga2Se3-GeSe2. Chem. Mater. 2014, 26, 5695-5699.

106

Bo, S. -H.; Wang, Y.; Kim, J. C.; Richards, W. D.; Ceder, G. Computational and experimental investigations of Na-ion conduction in cubic Na3PSe4. Chem. Mater. 2016, 28, 252-258.

107

Song, S. F.; Wen, Z. Y.; Liu, Y. Development and characterizations of Bi2O3-containing glass-ceramic sealants for sodium sulfur battery. J. Non-Cryst. Solids 2013, 375, 25-30.

108

Manthiram, A.; Yu, X. W. Ambient temperature sodium-sulfur batteries. Small 2015, 11, 2108-2114.

109

Patel, M.; Chandrappa, K. G.; Bhattacharyya, A. J. Increasing ionic conductivity of polymer-sodium salt complex by addition of a non-ionic plastic crystal. Solid State Ion. 2010, 181, 844-848.

110

Kumar, D.; Hashmi, S. A. Ionic liquid based sodium ion conducting gel polymer electrolytes. Solid State Ion. 2010, 181, 416-423.

111

Isa, K. B. M.; Othman, L.; Zainol, N. H.; Samin, S. M.; Chong, W. G.; Osman, Z.; Arof, A. K. M. Studies on sodium ion conducting gel polymer electrolytes. Key Eng. Mater. 2010, 594-595, 786-792.

112

Long, S. Fast ion conduction in molecular plastic crystals. Solid State Ion. 2003, 161, 105-112.

113

Alarco, P. -J.; Abu-Lebdeh, Y.; Abouimrane, A.; Armand, M. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat. Mater. 2004, 3, 476-481.

114

Bauer, I.; Kohl, M.; Althues, H.; Kaskel, S. Shuttle suppression in room temperature sodium-sulfur batteries using ion selective polymer membranes. Chem. Commun. 2014, 50, 3208-3210.

115

Armand, M.; Villaluenga, I.; Rojo, T. Hybrid electrolytes provided with inorganic nanoparticles covalently grafted with organic anions. European Patent 2014012679, Jan 23, 2014.

116

Seh, Z. W.; Sun, J.; Sun, Y. M.; Cui, Y. A highly reversible room-temperature sodium metal anode. ACS Cent. Sci. 2015, 1, 449-455.

117

Han, Y. K.; Jeong, G.; Lee, K. J.; Yim, T.; Kim, Y. J. A joint experimental and theoretical determination of the structure of discharge products in Na-SO2 batteries. Phys. Chem. Chem. Phys. 2016, 18, 24841-24844.

118

Hartmann, P.; Bender, C. L.; Vračar, M.; Dürr A. K.; Garsuch, A.; Janek, J.; Adelhelm, P. A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat. Mater. 2012, 12, 228-232.

119

Lu, Y. -C.; Kwabi, D. G.; Yao, K. P. C.; Harding, J. R.; Zhou, J. G.; Zuin, L.; Shao-Horn, Y. The discharge rate capability of rechargeable Li-O2 batteries. Energy Environ. Sci. 2011, 4, 2999-3004.

120

Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium-air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193-2203.

121

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2011, 11, 19-29.

122

Sun, Q.; Yang, Y.; Fu, Z. W. Electrochemical properties of room temperature sodium-air batteries with non-aqueous electrolyte. Electrochem. Commun. 2012, 16, 22-25.

123

Jeong, G.; Kim, H.; Sug, L. H.; Han, Y. K.; Hwan, P. J.; Hwan, J. J.; Song, J.; Lee, K.; Yim, T.; Jae, K. K. et al. A room-temperature sodium rechargeable battery using an SO2-based nonflammable inorganic liquid catholyte. Sci. Rep. 2015, 5, 12827.

124

Bhavaraju, S.; Joshi, A. V.; Robins, M.; Eccleston, A. Intermediate temperature sodium-metal halide battery. U.S. Patent 20150086826, Mar 26, 2015.

125

Kim, J. Y.; Li, G. S.; Lu, X. C.; Sprenkle, V. L.; Lemmon, J. P.; Yang, Z. G.; Coyle, C. A. Intermediate temperature sodium metal-halide energy storage devices. U.S. Patent 2013116263, Aug 8, 2013.

126

Bhavaraju, S.; Robins, M. Low viscosity/high conductivity sodium haloaluminate electrolyte. U.S. Patent 20140363717, Dec 11, 2014.

127

Kim, Y. J.; Jeong, G. J.; Kim, H. S. Sodium-metal chloride secondary battery and method of manufacturing the same. U.S. Patent 20150099195, Apr 9, 2015.

128

Kim, Y. J.; Jeong, G. J.; Kim, H. S. Sodium-sulfur dioxide secondary battery and method of manufacturing the same. U.S. Patent 20150099194, Apr 9, 2015.

129

Kim, J. Y.; Li, G. S.; Lu, S. C.; Sprenkle, V. L.; Lemmon, J. P. Metallization pattern on solid electrolyte or porous support of sodium battery and process. U.S. Patent 2014130109, Aug 28, 2014.

130

Hirayama, N. Materials named "ionic liquids"-History and definition. J. Ion Exch. 2011, 22, 33-38.

131

Vatamanu, J.; Vatamanu, M.; Bedrov, D. Non-faradaic energy storage by room temperature ionic liquids in nanoporous electrodes. ACS Nano 2015, 9, 5999-6017.

132

Lang, C. M.; Kim, K.; Kohl, P. A. Catalytic additives for the reversible reduction of sodium in chloroaluminate ionic liquids. Electrochim. Acta 2006, 51, 3884-3889.

133

Forsyth, M.; Yoon, H.; Chen, F. F.; Zhu, H. J.; MacFarlane, D. R.; Armand, M.; Howlett, P. C. Novel Na+ ion diffusion mechanism in mixed organic-inorganic ionic liquid electrolyte leading to high Na+ transference number and stable, high rate electrochemical cycling of sodium cells. J. Phys. Chem. C 2016, 120, 4276-4286.

134

Yang, L. P.; Liu, X. M.; Zhang, Y. W.; Yang, H.; Shen, X. D. Advanced intermediate temperature sodium copper chloride battery. J. Power Sources 2014, 272, 987-990.

135

Ohno, H. Electrochemical Aspects of Ionic Liquids; Wiley-Interscience: Hoboken, NJ, USA, 2005.

DOI
136

Moreno, J. S.; Jeremias, S.; Moretti, A.; Panero, S.; Passerini, S.; Scrosati, B.; Appetecchi, G. B. Ionic liquid mixtures with tunable physicochemical properties. Electro chim. Acta 2015, 151, 599-608.

137

Xu, W.; Cooper, E. I.; Angell, C. A. Ionic liquids: Ion mobilities, glass temperatures, and fragilities. J. Phys. Chem. B 2003, 107, 6170-6178.

138

Dokko, K.; Watanabe, M. Room-temperature ionic liquid electrolytes for alkali metal-sulfur batteries. Hyomen Kagaku 2013, 34, 309-314.

139

Jung, K.; Lee, S.; Park, Y. C.; Kim, C. S. Finite element analysis study on the thermomechanical stability of thermal compression bonding (TCB) joints in tubular sodium sulfur cells. J. Power Sources 2014, 250, 1-14.

140

Kumar, S.; Park, D. S. Sealing glass composition and article. U.S. Patent 9067818, Jun 30, 2015

141

Swift, G. Electrolyte materials, thermal battery components, and thermal batteries for intermediate temperature applications. U.S. Patent 20130078528, Mar 28, 2013.

142

Wachsman, E. D.; Hitz, G. T.; Lee, K. T. High conductivity Nasicon electrolyte for room temperature solid-state sodium ion batteries. U.S. Patent 2014052439, Apr 3, 2014.

143

Kondziella, H.; Bruckner, T. Flexibility requirements of renewable energy based electricity systems-A review of research results and methodologies. Renew. Sustain. Energy Rev. 2016, 53, 10-22.

144

Chen, H. S.; Cong, T. N.; Yang, W.; Tan, C. Q.; Li, Y. L.; Ding, Y. L. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291-312.

145

Beaudin, M.; Zareipour, H.; Schellenberglabe, A.; Rosehart, W. Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy Sustain. Dev. 2010, 14, 302-314.

146

Deane, J. P.; Ó Gallachóir, B. P.; McKeogh, E. J. Techno-economic review of existing and new pumped hydro energy storage plant. Renew. Sustain. Energy Rev. 2010, 14, 1293-1302.

147

Divya, K. C.; Østergaard, J. Battery energy storage technology for power systems-An overview. Electr. Power Syst. Res. 2009, 79, 511-520.

148

Alotto, P.; Guarnieri, M.; Moro, F. Redox flow batteries for the storage of renewable energy: A review. Renew. Sustain. Energy Rev. 2014, 29, 325-335.

149

Yamamoto, T.; Nohira, T.; Hagiwara, R.; Fukunaga, A.; Sakai, S.; Nitta, K.; Inazawa, S. Charge-discharge behavior of tin negative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl)amide-potassium bis(fluorosulfonyl)amide. J. Power Sources 2012, 217, 479-484.

150

Massalski, T. B. Binary Alloy Phase Diagrams, 2nd ed.; ASM International: Materials Park, Ohio, USA, 1990.

151

Brett, D. J. L.; Aguiar, P.; Brandon, N. P.; Bull, R. N.; Galloway, R. C.; Hayes, G. W.; Lillie, K.; Mellors, C.; Smith, C.; Tilley, A. R. Concept and system design for a ZEBRA battery-intermediate temperature solid oxide fuel cell hybrid vehicle. J. Power Sources 2006, 157, 782-798.

152

Bhavaraju, S. Hybrid molten/solid sodium anode for room/intermediate temperature electric vehicle battery. U.S. Patent 2014194231, Dec 4, 2014.

153

Rijssenbeek, J.; Gao, Y.; Zhong, Z.; Croft, M.; Jisrawi, N.; Ignatov, A.; Tsakalakos, T. In situ X-ray diffraction of prototype sodium metal halide cells: Time and space electrochemical profiling. J. Power Sources 2011, 196, 2332-2339.

154

Kim, J. S.; Kim, Y. S.; Chae, J. H.; Sun, H. Y. Sodium secondary battery having predetermined gap between safety tube and solid electrolyte tube. U.S. Patent 2013129783, Sep 6, 2013.

155
Ecomagination[Online]. http://www.ecomagination.com/portfolio/durathon-battery (accessed Jan 11, 2017).
156

Li, G. S.; Lu, X. C.; Kim, J. Y.; Meinhardt, K. D.; Chang, H. J.; Canfield, N. L.; Sprenkle, V. L. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density. Nat. Commun. 2016, 7, 10683.

157

Lu, X. C.; Lemmon, J. P.; Kim, J. Y.; Sprenkle, V. L.; Yang, Z. G. High energy density Na-S/NiCl2 hybrid battery. J. Power Sources 2013, 224, 312-316.

158

Antonucci, V.; Brunaccini, G.; De Pascale, A.; Ferraro, M.; Melino, F.; Orlandini, V.; Sergi, F. Integration of μ-SOFC generator and ZEBRA batteries for domestic application and comparison with other μ-CHP technologies. Energy Procedia 2015, 75, 999-1004.

159

Antonucci, V.; Branchini, L.; Brunaccini, G.; De Pascale, A.; Ferraro, M.; Melino, F.; Orlandini, V.; Sergi, F. Thermal integration of a SOFC power generator and a Na-NiCl2 battery for CHP domestic application. Appl. Energy 2017, 185, 1256-1267.

160

Boxley, C.; Coors, W. G.; Eccleston, A.; Robins, M. Low temperature molten sodium secondary cell with sodium ion conductive electrolyte membrane. U.S. Patent 2012061823, May 10, 2012.

161

Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636-11682.

162

Wei, T.; Gong, Y. H.; Zhao, X.; Huang, K. An all-ceramic solid-state rechargeable Na+-battery operated at intermediate temperatures. Adv. Funct. Mater. 2014, 24, 5380-5384.

163

Das, S. K.; Lau, S.; Archer, L. A. Sodium-oxygen batteries: A new class of metal-air batteries. J. Mater. Chem. A 2014, 2, 12623-12629.

164

Liu, G.; Wang, D. D. Low temperature sulfur and sodium metal battery for grid-scale energy storage application. U.S. Patent 2014007868, Jan 9, 2014.

Publication history
Copyright
Acknowledgements

Publication history

Received: 11 January 2017
Revised: 27 February 2017
Accepted: 23 March 2017
Published: 15 June 2017
Issue date: December 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was financially supported by the Basque Government (No. GV IT570-13), Ministerio de Economía y Competitividad (No. MAT2016-78266-P) and sponsored by the European Regional Development Fund (ERDF).

Return