Journal Home > Volume 9 , Issue 9

Hydrothermal carbonization (HTC) of biomass to produce one-dimensional carbon materials with hierarchical pores is of significant importance. Here, we fabricate composites of MnOx-encapsulated multiporous carbon nanofibers (M-MCNFs) from naturally available carbohydrates through a dopamine-assisted HTC/ templating process. The introduction of dopamine aids in the formation of the morphology of carbon nanofibers (CNFs) by enhancing the interactions between the hard-templates and carbohydrates. The chosen cryptomelane hard-templates, which are superior to traditional hard-templates, are converted into Mn3O4 nanoparticles embedded in multiporous CNFs (MCNFs), eliminating the need for tedious post deposition procedures to introduce redox active sites. Hence, the obtained hybrids with large surface areas, hierarchical pores, and unique structures show great potential in supercapacitors. This economic and sustainable strategy paves a new way for synthesizing MCNFs and metal oxide-encapsulated MCNFs composites from biomass.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hydrothermal synthesis of manganese oxide encapsulated multiporous carbon nanofibers for supercapacitors

Show Author's information Haiyan WangJiang DengYiqing ChenFan XuZhongzhe WeiYong Wang( )
Advanced Materials and Catalysis GroupZJU-NHU United R & D CenterCenter for Chemistry of High-Performance and Novel MaterialsDepartment of ChemistryZhejiang UniversityHangzhou310028China

Abstract

Hydrothermal carbonization (HTC) of biomass to produce one-dimensional carbon materials with hierarchical pores is of significant importance. Here, we fabricate composites of MnOx-encapsulated multiporous carbon nanofibers (M-MCNFs) from naturally available carbohydrates through a dopamine-assisted HTC/ templating process. The introduction of dopamine aids in the formation of the morphology of carbon nanofibers (CNFs) by enhancing the interactions between the hard-templates and carbohydrates. The chosen cryptomelane hard-templates, which are superior to traditional hard-templates, are converted into Mn3O4 nanoparticles embedded in multiporous CNFs (MCNFs), eliminating the need for tedious post deposition procedures to introduce redox active sites. Hence, the obtained hybrids with large surface areas, hierarchical pores, and unique structures show great potential in supercapacitors. This economic and sustainable strategy paves a new way for synthesizing MCNFs and metal oxide-encapsulated MCNFs composites from biomass.

Keywords: supercapacitor, manganese oxide, hydrothermal carbonization, multiporous carbon nanofiber, encapsulated

References(40)

1

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56-58.

2

Liang, H. -W.; Wang, L.; Chen, P. -Y.; Lin, H. -T.; Chen, L. -F.; He, D.; Yu, S. -H. Carbonaceous nanofiber membranes for selective filtration and separation of nanoparticles. Adv. Mater. 2010, 22, 4691-4695.

3

Liang, H. -W.; Cao, X.; Zhang, W. -J.; Lin, H. -T.; Zhou, F.; Chen, L. -F.; Yu, S. -H. Robust and highly efficient free- standing carbonaceous nanofiber membranes for water purification. Adv. Funct. Mater. 2011, 21, 3851-3858.

4

Planeix, J. M.; Coustel, N.; Coq, B.; Brotons, V.; Kumbhar, P. S.; Dutartre, R.; Geneste, P.; Bernier, P.; Ajayan, P. M. Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc. 1994, 116, 7935-7936.

5

Cavaliere, S.; Subianto, S.; Savych, I.; Jones, D. J.; Rozière, J. Electrospinning: Designed architectures for energy conversion and storage devices. Energy Environ. Sci. 2011, 4, 4761-4785.

6

Jiang, K. L.; Li, Q. Q.; Fan, S. S. Nanotechnology: Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.

7

Thess, A.; Lee, R.; Nikolaev, P.; Dai, H. J.; Petit, P.; Robert, J.; Xu, C. H.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G. et al. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273, 483-487.

8

Jiang, Y.; Wu, Y.; Zhang, S. Y.; Xu, C. Y.; Yu, W. C.; Xie, Y.; Qian, Y. T. A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature. J. Am. Chem. Soc. 2000, 122, 12383-12384.

9

White, R. J.; Budarin, V.; Luque, R.; Clark, J. H.; Macquarrie, D. J. Tuneable porous carbonaceous materials from renewable resources. Chem. Soc. Rev. 2009, 38, 3401-3418.

10

Zhang, P. F.; Yuan, J. Y.; Fellinger, T. -P.; Antonietti, M.; Li, H. R.; Wang, Y. Improving hydrothermal carbonization by using poly(ionic liquid)s. Angew. Chem., Int. Ed. 2013, 52, 6028-6032.

11

White, R. J.; Antonio, C.; Budarin, V. L.; Bergström, E.; Thomas-Oates, J.; Clark, J. H. Polysaccharide-derived carbons for polar analyte separations. Adv. Funct. Mater. 2010, 20, 1834-1841.

12

Wang, S. P.; Han, C. L.; Wang, J.; Deng, J.; Zhu, M. L.; Yao, J.; Li, H. R.; Wang, Y. Controlled synthesis of ordered mesoporous carbohydrate-derived carbons with flower-like structure and N-doping by self-transformation. Chem. Mater. 2014, 26, 6872-6877.

13

Fang, Y.; Gu, D.; Zou, Y.; Wu, Z. X.; Li, F. Y.; Che, R. C.; Deng, Y. H.; Tu, B.; Zhao, D. Y. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew. Chem., Int. Ed. 2010, 49, 7987-7991.

14

Sevilla, M.; Fuertes, A. B. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 2009, 47, 2281-2289.

15

Hu, B.; Wang, K.; Wu, L. H.; Yu, S. -H.; Antonietti, M.; Titirici, M. -M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 2010, 22, 813-828.

16

Liang, H. -W.; Liu, J. -W.; Qian, H. -S.; Yu, S. -H. Multiplex templating process in one-dimensional nanoscale: Controllable synthesis, macroscopic assemblies, and applications. Acc. Chem. Res. 2013, 46, 1450-1461.

17

Liang, H. -W.; Guan, Q. -F.; Chen, L. -F.; Zhu, Z.; Zhang, W. -J.; Yu, S. -H. Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem., Int. Ed. 2012, 51, 5101-5105.

18

Ryu, J.; Suh, Y. -W.; Suh, D. J.; Ahn, D. J. Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds. Carbon 2010, 48, 1990-1998.

19

Titirici, M. -M.; Antonietti, M.; Baccile, N. Hydrothermal carbon from biomass: A comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem. 2008, 10, 1204-1212.

20

Wohlgemuth, S. -A.; White, R. J.; Willinger, M. -G.; Titirici, M. -M.; Antonietti, M. A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction. Green Chem. 2012, 14, 1515-1523.

21

Wang, D. -W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. -M. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem., Int. Ed. 2008, 47, 373-376.

22

Deng, J.; Xiong, T. Y.; Xu, F.; Li, M. M.; Han, C. L.; Gong, Y. T.; Wang, H. Y.; Wang, Y. Inspired by bread leavening: One-pot synthesis of hierarchically porous carbon for supercapacitors. Green Chem. 2015, 17, 4053-4060.

23

Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426-430.

24

Mane, G. P.; Talapaneni, S. N.; Anand, C.; Varghese, S.; Iwai, H.; Ji, Q. M.; Ariga, K.; Mori, T.; Vinu, A. Preparation of highly ordered nitrogen-containing mesoporous carbon from a gelatin biomolecule and its excellent sensing of acetic acid. Adv. Funct. Mater. 2012, 22, 3596-3604.

25

Lu, A. H.; Kiefer, A.; Schmidt, W.; Schüth, F. Synthesis of polyacrylonitrile-based ordered mesoporous carbon with tunable pore structures. Chem. Mater. 2004, 16, 100-103.

26

Yuan, J. K.; Liu, X. G.; Akbulut, O.; Hu, J. Q.; Suib, S. L.; Kong, J.; Stellacci, F. Superwetting nanowire membranes for selective absorption. Nat. Nanotechnol. 2008, 3, 332-336.

27

Wang, B.; Park, J.; Wang, C. Y.; Ahn, H.; Wang, G. X. Mn3O4 nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors. Electrochim. Acta 2010, 55, 6812-6817.

28

Qu, J. Y.; Gao, F.; Zhou, Q.; Wang, Z. Y.; Hu, H.; Li, B. B.; Wan, W. B.; Wang, X. Z.; Qiu, J. S. Highly atom-economic synthesis of graphene/Mn3O4 hybrid composites for electrochemical supercapacitors. Nanoscale 2013, 5, 2999-3005.

29

Kimura, H.; Nakahara, M.; Matubayasi, N. In situ kinetic study on hydrothermal transformation of D-glucose into 5-hydroxymethylfurfural through d-fructose with 13C NMR. J. Phys. Chem. A 2011, 115, 14013-14021.

30

Yu, G. H.; Hu, L. B.; Liu, N.; Wang, H. L.; Vosgueritchian, M.; Yang, Y.; Cui, Y.; Bao, Z. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 2011, 11, 4438-4442.

31

Liang, K.; Gu, T. L.; Cao, Z. Y.; Tang, X. Z.; Hu, W. C.; Wei, B. Q. In situ synthesis of SWNTs@MnO2/polypyrrole hybrid film as binder-free supercapacitor electrode. Nano Energy 2014, 9, 245-251.

32

Li, F.; Zhang, Y. X.; Huang, M.; Xing, Y.; Zhang, L. L. Rational design of porous MnO2 tubular arrays via facile and templated method for high performance supercapacitors. Electrochim. Acta 2015, 154, 329-337.

33

Zhao, L.; Yu, J.; Li, W. J.; Wang, S. G.; Dai, C. L.; Wu, J. W.; Bai, X. D.; Zhi, C. Y. Honeycomb porous MnO2 nanofibers assembled from radially grown nanosheets for aqueous supercapacitors with high working voltage and energy density. Nano Energy 2014, 4, 39-48.

34

Yang, P. H.; Ding, Y.; Lin, Z. Y.; Chen, Z. W.; Li, Y. Z.; Qiang, P. F.; Ebrahimi, M.; Mai, W. J.; Wong, C. P.; Wang, Z. L. Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 2014, 14, 731-736.

35

Cheng, Y. W.; Lu, S. T.; Zhang, H. B.; Varanasi, C. V.; Liu, J. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett. 2012, 12, 4206-4211.

36

Hou, Y.; Cheng, Y. W.; Hobson, T.; Liu, J. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/ conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett. 2010, 10, 2727-2733.

37

He, Y. M.; Chen, W. J.; Li, X. D.; Zhang, Z. X.; Fu, J. C.; Zhao, C. H.; Xie, E. Q. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 2013, 7, 174-182.

38

Zhi, J.; Deng, S.; Wang, Y. F.; Hu, A. G. Highly ordered metal oxide nanorods inside mesoporous silica supported carbon nanomembranes: High performance electrode materials for symmetrical supercapacitor devices. J. Phys. Chem. C 2015, 119, 8530-8536.

39

Liu, X. J.; Liu, J. F.; Sun, X. M. NiCo2O4@NiO hybrid arrays with improved electrochemical performance for pseudocapacitors. J. Mater. Chem. A 2015, 3, 13900-13905.

40

Wu, M. -S.; Hsu, W. -H. Nickel nanoparticles embedded in partially graphitic porous carbon fabricated by direct carbonization of nickel-organic framework for high-performance supercapacitors. J. Power Sources 2015, 274, 1055-1062.

File
nr-9-9-2672_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 April 2016
Revised: 15 May 2016
Accepted: 16 May 2016
Published: 27 June 2016
Issue date: September 2016

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

Financial support from National Natural Science Foundation of China (Nos. 21376208 and 91534114), the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars of China (No. LR13B030001), the Fundamental Research Funds for the Central Universities, and the Partner Group Program of the Zhejiang University and the Max- Planck Society is appreciated greatly.

Return