Journal Home > Volume 9 , Issue 2

Because of the coupling between semiconducting and piezoelectric properties in wurtzite materials, strain-induced piezo-charges can tune the charge transport across the interface or junction, which is referred to as the piezotronic effect. For devices whose dimension is much smaller than the mean free path of carriers (such as a single atomic layer of MoS2), ballistic transport occurs. In this study, transport in the monolayer MoS2 piezotronic transistor is studied by presenting analytical solutions for two-dimensional (2D) MoS2. Furthermore, a numerical simulation for guiding future 2D piezotronic nanodevice design is presented.


menu
Abstract
Full text
Outline
About this article

Ballistic transport in single-layer MoS2 piezotronic transistors

Show Author's information Xin Huang1Wei Liu1Aihua Zhang1Yan Zhang1,2( )Zhonglin Wang1,3( )
Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083China
Institute of Theoretical Physicsand Key Laboratory for Magnetism and Magnetic Materials of MOELanzhou UniversityLanzhou730000China
School of Material Science and EngineeringGeorgia Institute of TechnologyGA30332USA

Abstract

Because of the coupling between semiconducting and piezoelectric properties in wurtzite materials, strain-induced piezo-charges can tune the charge transport across the interface or junction, which is referred to as the piezotronic effect. For devices whose dimension is much smaller than the mean free path of carriers (such as a single atomic layer of MoS2), ballistic transport occurs. In this study, transport in the monolayer MoS2 piezotronic transistor is studied by presenting analytical solutions for two-dimensional (2D) MoS2. Furthermore, a numerical simulation for guiding future 2D piezotronic nanodevice design is presented.

Keywords: ballistic transport, numerical calculation, piezotronic transistor, two-dimensional (2D) MoS2

References(35)

1

Wu, W. Z.; Pan, C. F.; Zhang, Y.; Wen, X. N.; Wang, Z. L. Piezotronics and piezo-phototronics—From single nanodevices to array of devices and then to integrated functional system. Nano Today 2013, 8, 619–642.

2

Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

3

Wu, W.; Wen, X.; Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 2013, 340, 952–957.

4

Yu, R. M.; Wu, W. Z.; Pan, C. F.; Wang, Z. N.; Ding, Y.; Wang, Z. L. Piezo-phototronic boolean logic and computation using photon and strain dual-gated nanowire transistors. Adv. Mater. 2015, 27, 940–947.

5

Pan, C. F.; Dong, L.; Zhu, G.; Niu, S. M.; Yu, R. M.; Yang, Q.; Liu, Y.; Wang, Z. L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 2013, 7, 752–758.

6

Wang, Z. L. Piezotronics and Piezo-Phototronics; Springer-Verlag: Berlin, Heidelberg, 2012.

DOI
7

Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474.

8

Zhang, Y.; Liu, Y.; Wang, Z. L. Fundamental theory of piezotronics. Adv. Mater. 2011, 23, 3004–3013.

9

Lundstrom, M. Fundamentals of Carrier Transport; Cambridge University Press: Cambridge, 2009.

10

Hess, K. Advanced Theory of Semiconductor Devices; Wiley–IEEE Press: New York, 1999.

11

Schep, K. M.; Kelly, P. J.; Bauer, G. E. W. Ballistic transport and electronic structure. Phys. Rev. B 1998, 57, 8907–8926.

12

Yoon, Y.; Ganapathi, K.; Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 2011, 11, 3768–3773.

13

Sengupta, A.; Mahapatra, S. Performance limits of transition metal dichalcogenide (MX2) nanotube surround gate ballistic field effect transistors. J. Appl. Phys. 2013, 113, 194502.

14

Liu, L. T.; Bala Kumar, S.; Ouyang, Y.; Guo, J. Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans. Electron Devices 2011, 58, 3042–3047.

15

Rhew, J. -H.; Ren, Z. B.; Lundstrom, M. S. A numerical study of ballistic transport in a nanoscale MOSFET. Sol. -State Electron. 2002, 46, 1899–1906.

16

Rahman, A.; Guo, J.; Datta, S.; Lundstrom, M. S. Theory of ballistic nanotransistors. IEEE Trans. Electron Devices 2003, 50, 1853–1864.

17

Natori, K. Ballistic metal-oxide-semiconductor field effect transistor. J. Appl. Phys. 1994, 76, 4879–4890.

18

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

19

Ikeda, T. Fundamentals of Piezoelectricity; Oxford University Press: Oxford, 1990.

20

Liu, Y.; Zhang, Y.; Yang, Q.; Niu, S. M.; Wang, Z. L. Fundamental theories of piezotronics and piezo-phototronics. Nano Energy 2015, 14, 257–275.

21

Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Develop. 1957, 1, 223–231.

22

Büttiker, M.; Imry, Y.; Landauer, R.; Pinhas, S. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 1985, 31, 6207–6215.

23

Aymerich-Humet, X.; Serra-Mestres, F.; Millán, J. A generalized approximation of the Fermi–Dirac integrals. J. Appl. tPhys. 1983, 54, 2850–2851.

24

Datta, S. Quantum Transport: Atom to Transistor, 2nd ed.; Cambridge University Press: Cambridge, 2005.

DOI
25

Li, S. S. Semiconductor Physical Electronics, 2nd ed.; Springer: New York, 2007.

26

Zhang, Y.; Wang, Z. L. Theory of piezo-phototronics for light-emitting diodes. Adv. Mater. 2012, 24, 4712–4718.

27

Liu, Y.; Niu, S. M.; Yang, Q.; Klein, B. D. B.; Zhou, Y. S.; Wang, Z. L. Theoretical study of piezo-phototronic nano-LEDs. Adv. Mater. 2014, 26, 7209–7216.

28

Ren, Z. B.; Venugopal, R.; Goasguen, S.; Datta, S.; Lundstrom, M. S. NanoMOS 2.5: A two-dimensional simulator for quantum transport in double-gate MOSFETs. IEEE Trans. Electron Devices 2003, 50, 1914–1925.

29

Gao, Y. F.; Low, T.; Lundstrom, M. S.; Nikonov, D. E. Simulation of spin field effect transistors: Effects of tunneling and spin relaxation on performance. J. Appl. Phys. 2010, 108, 083702.

30

Tan, S. G.; Jalil, M. B. A.; Liew, T.; Teo, K. L.; Lai, G. H.; Chong, T. C. Magnetoelectric spin-FET for memory, logic, and amplifier applications. J. Supercond. 2005, 18, 357–365.

31

Koo, H. C.; Kwon, J. H.; Eom, J.; Chang, J.; Han, S. H.; Johnson, M. Control of spin precession in a spin-injected field effect transistor. Science 2009, 325, 1515–1518.

32
Saito, Y.; Sugiyama, H.; Inokuchi, T.; Ishikawa, M. Spin fet and magnetoresistive element. U.S. Patent 20, 090, 057, 654, August 25, 2008.
33

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Twodimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

34

Liu, W.; Zhang, A. H.; Zhang, Y.; Wang, Z. L. First principle simulations of piezotronic transistors. Nano Energy 2015, 14, 355–363.

35

Tang, T. -W. Extension of the Scharfetter–Gummel algorithm to the energy balance equation. IEEE Trans. Electron Devices 1984, 31, 1912–1914.

Publication history
Copyright
Acknowledgements

Publication history

Received: 17 June 2015
Revised: 09 September 2015
Accepted: 28 September 2015
Published: 04 December 2015
Issue date: February 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was supported by the "thousands talents" program for pioneer researcher and his innovation team, China, the National Natural Science Foundation of China (No. 51432005), and Beijing Municipal Commission of Science and Technology (Nos. Z131100006013005 and Z131100006013004).

Return