Journal Home > Volume 8 , Issue 8

A novel infrared light emitting diode (LED) based on an ordered p-n heterojunction built of a p-Si1–xGex alloy and n-ZnO nanowires has been developed. The electroluminescence (EL) emission of this LED is in the infrared range, which is dominated by the band gap of Si1–xGex alloy. The EL wavelength variation of the LED shows a red shift, which increases with increasing mole fraction of Ge. With Ge mole fractions of 0.18, 0.23 and 0.29, the average EL wavelengths are around 1, 144, 1, 162 and 1, 185 nm, respectively. The observed magnitudes of the red shifts are consistent with theoretical calculations. Therefore, by modulating the mole fraction of Ge in the Si1–xGex alloy, we can adjust the band gap of the SiGe film and tune the emission wavelength of the fabricated LED. Such an IR LED device may have great potential applications in optical communication, environmental monitoring and biological and medical analyses.


menu
Abstract
Full text
Outline
About this article

Wavelength-tunable infrared light emitting diode based on ordered ZnO nanowire/Si1–xGex alloy heterojunction

Show Author's information Taiping Zhang1,§Renrong Liang2,§( )Lin Dong1Jing Wang2Jun Xu2Caofeng Pan1( )
Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083China
Institute of MicroelectronicsTsinghua UniversityBeijing100084China

§Authors contributed equally to this work.

Abstract

A novel infrared light emitting diode (LED) based on an ordered p-n heterojunction built of a p-Si1–xGex alloy and n-ZnO nanowires has been developed. The electroluminescence (EL) emission of this LED is in the infrared range, which is dominated by the band gap of Si1–xGex alloy. The EL wavelength variation of the LED shows a red shift, which increases with increasing mole fraction of Ge. With Ge mole fractions of 0.18, 0.23 and 0.29, the average EL wavelengths are around 1, 144, 1, 162 and 1, 185 nm, respectively. The observed magnitudes of the red shifts are consistent with theoretical calculations. Therefore, by modulating the mole fraction of Ge in the Si1–xGex alloy, we can adjust the band gap of the SiGe film and tune the emission wavelength of the fabricated LED. Such an IR LED device may have great potential applications in optical communication, environmental monitoring and biological and medical analyses.

Keywords: ZnO nanowire, SiGe alloy, infrared light emitting diode, wavelength-tunable

References(46)

1

Vispute, R. D.; Talyansky, V.; Choopun, S.; Sharma, R. P.; Venkatesan, T.; He, M.; Tang, X.; Halpern, J. B.; Spencer, M. G.; Li, Y. X. et al. Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Appl. Phys. Lett. 1998, 73, 348-350.

2

Alivov, Y. I.; Van Nostrand, J. E.; Look, D. C.; Chukichev, M. V.; Ataev, B. M. Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes. Appl. Phys. Lett. 2003, 83, 2943-2945.

3

Asıl, H.; Gür, E.; Çınar, K.; Coşkun, C. Electrochemical growth of n-ZnO onto the p-type GaN substrate: p-n heterojunction characteristics. Appl. Phys. Lett. 2009, 94, 253501.

4

Zhong, J.; Chen, H.; Saraf, G.; Lu, Y; Choi, C. K.; Song, J. J.; Mackie, D. M.; Shen, H. Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency. Appl. Phys. Lett. 2007, 90, 203515.

5

An, S. J.; Chae, J. H.; Yi, G. C.; Park, G. H. Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays. Appl. Phys. Lett. 2008, 92, 121108.

6

Kim, K. S.; Kim, S. M.; Jeong, H.; Jeong, M. S.; Jung, G. Y. Enhancement of light extraction through the wave-guiding effect of ZnO sub-microrods in InGaN blue light-emitting diodes. Adv. Funct. Mater. 2010, 20, 1076-1082.

7

Alivov, Ya. I.; Kalinina, E. V.; Cherenkov, A. E.; Look, D. C.; Ataev, B. M.; Omaev, A. K.; Chukichev, M. V.; Bagnall, D. M. Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl. Phys. Lett. 2003, 83, 4719-4721.

8

Look, D. C.; Claflin, B.; Alivov, Y. I.; Park, S. J. The future of ZnO light emitters. Phys. Stat. Sol. A 2004, 201, 2203-2212.

9

Xiang, B.; Wang, P. W.; Zhang, X. Z.; Dayeh, S. A.; Aplin, D. P. R.; Soci, C.; Yu, D. P.; Wang, D. L. Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Lett. 2007, 7, 323-328.

10

Xu, S.; Xu, C.; Liu, Y.; Hu, Y. F.; Yang, R. S.; Yang, Q.; Ryou, J. H.; Kim, H. J.; Lochner, Z.; Choi, S. et al. Ordered nanowire array blue/near-UV light emitting diodes. Adv. Mater. 2010, 22, 4749-4753.

11

Jha, S.; Qian, J. C.; Kutsay, O.; Kovac Jr, J. K.; Luan, C. Y.; Zapien, J. A.; Zhang, W. J.; Lee, S. T.; Bello, I. Violet-blue LEDs based on p-GaN/n-ZnO nanorods and their stability. Nanotechnology 2011, 22, 245202.

12

Zhang, S. G.; Zhang, X. W.; Si, F. T.; Dong, J. J.; Wang, J. X.; Liu, X.; Yin, Z. G.; Gao, H. L. Ordered ZnO nanorods-based heterojunction light-emitting diodes with grapheme current spreading layer. Appl. Phys. Lett. 2012, 101, 121104.

13

Pan, C. F.; Dong, L.; Zhu, G.; Niu, S. M.; Yu, R. M.; Yang, Q.; Liu, Y.; Wang, Z. L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photon. 2013, 7, 752-758.

14

Yang, Q.; Wang, W. H.; Xu, S.; Niu, S.; Wang, Z. L. Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect. Nano Lett. 2011, 11, 4012-4017.

15

Yang, Q.; Liu, Y.; Pang, C.; Chen, J.; Wen, X.; Wang, Z. L. Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect. Nano Lett. 2013, 13, 607-613.

16
Wang, C. F.; Bao, R. R.; Zhao, K.; Zhang, T. P.; Dong, L.; Pan, C. F. Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized LED array by piezo-phototronic effect. Nano Energy, in press, DOI: 10.1016/j.nanoen.2014.11.033.https://doi.org/10.1016/j.nanoen.2014.11.033
DOI
17

Sun, H.; Zhang, Q. F.; Wu, J. L. Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure. Nanotechnology 2006, 17, 2271-2274.

18

Bao, J. M.; Zimmler, M. A.; Capasso, F.; Wang, X. W.; Pen, Z. F. Broadband ZnO single-nanowire light-emitting diode. Nano Lett. 2006, 6, 1719-1722.

19

Chen, P. L.; Ma, X. Y.; Yang, D. R. Ultraviolet electroluminescence from ZnO/p-Si heterojunctions. J. Appl. Phys. 2007, 101, 053103.

20

Zimmler, M. A.; Voss, T.; Ronning, C.; Capasso, F. Exciton-related electroluminescence from ZnO nanowire light-emitting diodes. Appl. Phys. Lett. 2009, 94, 241120.

21

Lee, S. W.; Cho, H. D.; Panin, G.; Kang, T. W. Vertical ZnO nanorod/Si contact light-emitting diode. Appl. Phys. Lett. 2011, 98, 093110.

22

Jung, B. O.; Lee, J. H.; Lee, J. Y.; Kim, J. H.; Cho, H. K. High-purity ultraviolet electroluminescence from n-ZnO nanowires/p+-Si heterostructure LEDs with i-MgO film as carrier control layer. J. Electrochem. Soc. 2012, 159, H102-H106.

23

Chan, V. F.; Su, W.; Zhang, C. X.; Wu, Z. L.; Tang, Y.; Sun, X. Q.; Xu, H. J. Electroluminescence from ZnO-nanofilm/ Si-micropillar heterostructure arrays. Opt. Express 2012, 20, 24280-24287.

24

Tsai, J. K.; Shih, J. H.; Wu, T. C.; Meen, T. H. n-ZnO nanorods/p+-Si (111) heterojunction light emitting diodes. Nanoscale Res. Lett. 2012, 7, 664.

25

Xian, F. L.; Wang, X. X.; Xu, L. H.; Li, X. Y.; Bai, W. F. Color tunable electroluminescence from Co-doped ZnO nanorods/ p-Si heterojunction. J. Lumin. 2013, 144, 154-157.

26

Hsieh, Y. P.; Chen, H. Y.; Lin, M. Z.; Shiu, S. C.; Hofmann, M.; Chern, M. Y.; Jia, X.; Yang, Y. J.; Chang, H. J.; Huang, H. M. et al. Electroluminescence from ZnO/Si-nanotips light-emitting diodes. Nano Lett. 2009, 9, 1839-1843.

27

Weber, J.; Alonso, M. I. Near-band-gap photoluminescence of Si-Ge alloys. Phys. Rev. B 1989, 40, 5683-5693.

28

Rieger, M. M.; Vogl, P. Electronic-band parameters in strained Si1-xGex alloys on Si1-yGeysubstrates. Phys. Rev. B 1993, 48, 14276-14287.

29

Fischetti, M. V.; Laux, S. E. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 1996, 80, 2234-2252.

30

Moontragoon, P.; Ikonić, Z.; Harrison, P. Band structure calculations of Si-Ge-Sn alloys: Achieving direct band gap materials. Semicond. Sci. Technol. 2007, 22, 742-748.

31

Li, J. B.; Meng, C.; Liu, Y.; Wu, X. Q.; Lu, Y. Z.; Ye, Y.; Dai, L.; Tong, L. M.; Liu, X.; Yang, Q. Wavelength tunable CdSe nanowire laser based on the absorption-emission-absorption process. Adv. Mater. 2013, 25, 833-837.

32

Yang, Z. Y.; Wang, D. L.; Meng, C.; Wu, Z. M.; Wang, Y.; Ma, Y. G.; Dai, L.; Liu, X. W.; Hasan, T.; Liu, X. et al. Broudly defining lasing wavelengths in single bandgap-graded semiconductor nanowire. Nano. Lett. 2014, 14, 3153-3159.

33

Tsang, M. K.; Bai, G. X.; Hao, J. H. Stimuli responsive upconversion luminescence nanomaterials and films for various applications. Chem. Soc. Rev. 2015, 44, 1585-1607.

34

Bai, G. X.; Tsang, M. K.; Hao, J. H. Tuning the luminescence of phosphors: Beyond conventional chemical method. Adv. Optical Mater. 2015, 3, 431-462.

35

Han, C. B.; He, C.; Li, X. J. Near-infrared light emission from a GaN/Si nanoheterostructure array. Adv. Mater. 2011, 23, 4811-4814.

36

Han, C. B.; He, C.; Meng, X. B.; Wan, Y. R.; Tian, Y. T.; Zhang, Y. J.; Li, X. J. Effect of annealing treatment on electroluminescence from GaN/Si nanoheterostructure array. Opt. Express 2012, 20, 5636-5643.

37

Li, Y.; Meng, G. W.; Zhang, L. D.; Phillipp, F. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Appl. Phys. Lett. 2000, 76, 2011-2013.

38

Zhang, R.; Yin, P. G.; Wang, N.; Guo, L. Photoluminnescence and Raman scattering of ZnO nanorods. Solid state Sci. 2009, 11, 865-869.

39

Hartmann, J. M.; Bogumilowicz, Y.; Holliger, P.; Laugier, F.; Truche, R.; Rolland, G.; Séméria, M. N.; Renard, V.; Olshanetsky, E. B.; Estibals, O. et al. Reduced pressure chemical vapour deposition of SiGe virtual substrates for high mobility devices. Semicond. Sci. Technol. 2004, 19, 311-318.

40

Liang, R. R.; Zhang, K.; Yang, Z. R.; Xu, Y.; Wang, J.; Xu, J. Fabrication and characterization of strained Si material using SiGe virtualsubstrate for high mobility devices. J. Semicond. 2007, 28, 1518-1522.

41

Li, B. B.; Yu, D. P.; Zhang, S. L. Raman spectral study of silicon nanowires. Phys. Rev. B 1999, 59, 1645-1648.

42

Winer, K.; Alonso, M. I. Raman spectra of c-Si1-xGex alloys. Phys. Rev. B 1989, 39, 10056-10062.

43

Torres, V. J. B.; Coutinho, J.; Briddon, P. R.; Barroso, M. Ab-initio vibrational properties of SiGe alloys. Thin Solid films 2008, 517, 395-397.

44

Pagès, O.; Souhabi, J.; Torres V. J. B.; Postnikov, A. V.; Rustagi, K. C. Re-examination of the SiGe Raman spectra: Percolation/one-dimensional-pixel scheme and ab initio calculations. Phys. Rev. B 2012, 86, 045201.

45

Cuscó, R.; Alarcón-Lladó, E.; Ibáñez, J.; Artús, L.; Jiménez, J.; Wang, B. G.; Callahan, M. J. Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 2007, 75, 165202.

46

Huang, Y. Q.; Liu, M. D.; Li, Z.; Zeng, Y. K.; Liu, S. B. Raman spectroscopy study of ZnO-based ceramic films fabricated by novel sol-gel process. Mat. Sci. Eng. B 2003, 97, 111-116.

Publication history
Copyright
Acknowledgements

Publication history

Received: 12 February 2015
Revised: 15 March 2015
Accepted: 24 March 2015
Published: 29 August 2015
Issue date: August 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

The authors are grateful for the support from the "Thousands Talents" Program for Pioneer Researchers and Their Innovation Teams, China; the President's Funding of the Chinese Academy of Sciences; the National Natural Science Foundation of China (Nos. 51272238, 21321062, 51432005 and 61405040); the Innovation Talent Project of Henan Province (No. 13HASTIT020); the Talent Project of Zhengzhou University (No. ZDGD13001) and the Surface Engineering Key Lab of LIPCAST; the Tsinghua University Initiative Scientific Research Program, the National Natural Science Foundation of China (No. 61306105).

Return