Journal Home > Volume 8 , Issue 6

We introduce a transparent windshield-glass heater produced via transparent electrodes using silver nanowire (AgNW) networks for conventional use in the automobile industry. A high-quality conducting hybrid film is deposited on a plasma-treated glass substrate by spraying AgNWs, immersing the sprayed product in positively charged adhesive polymer solution, and then spraying negatively charged graphene oxide (GO) and a silane layer as an over-coating layer (OCL).The results of heating tests conducted after adhesion tests show that the sheet resistance changes with the application of polymer glue. Surprisingly, the transmittance of the film with the GO OCL is higher than that of the film without the GO OCL. Heating and defrosting tests are carefully conducted via infrared (IR) monitoring. Adhesive-polymer-treated and GO-protected AgNW transparent glass heaters exhibit the best performance with low sheet resistance; thus, through strong electrostatic interaction among the substrate, adhesive layer, and OCL, our AgNW hybrid glass heater can reach the target temperature with a standard vehicle voltage of 12 V in a short period of time.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hybrid windshield-glass heater for commercial vehicles fabricated via enhanced electrostatic interactions among a substrate, silver nanowires, and an over-coating layer

Show Author's information Sae Mi Lee1,§Ji Hun Lee1,§Sora Bak1Keunsik Lee1Yang Li1Hyoyoung Lee1,2,3( )
Center for Smart Molecular MemoryDepartment of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon440-746Republic of Korea
Center for Smart Molecular MemoryDepartment of Energy Science, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon440-746Republic of Korea
Center for Smart Molecular MemorySKKU Advanced Institute of Nano Technology (SAINT)Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon440-746Republic of Korea

§ These authors contributed equally to this work.

Abstract

We introduce a transparent windshield-glass heater produced via transparent electrodes using silver nanowire (AgNW) networks for conventional use in the automobile industry. A high-quality conducting hybrid film is deposited on a plasma-treated glass substrate by spraying AgNWs, immersing the sprayed product in positively charged adhesive polymer solution, and then spraying negatively charged graphene oxide (GO) and a silane layer as an over-coating layer (OCL).The results of heating tests conducted after adhesion tests show that the sheet resistance changes with the application of polymer glue. Surprisingly, the transmittance of the film with the GO OCL is higher than that of the film without the GO OCL. Heating and defrosting tests are carefully conducted via infrared (IR) monitoring. Adhesive-polymer-treated and GO-protected AgNW transparent glass heaters exhibit the best performance with low sheet resistance; thus, through strong electrostatic interaction among the substrate, adhesive layer, and OCL, our AgNW hybrid glass heater can reach the target temperature with a standard vehicle voltage of 12 V in a short period of time.

Keywords: silver nanowires, transparent windshield-glass heater, heating glass, adhesive polymers, material science

References(32)

1

Hecht, D. S.; Hu, L.; Irvin, G. Emerging transparent electrodes based on thin films ofcarbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482-1513.

2

Kumar, A.; Zhou, C. W. The race to replace tin-doped indiumoxide: Which material will win? ACS Nano, 2010, 4, 11-14.

3

Schnorr, J. M.; Swager, T. M. Emerging applications of carbon nanotubes. Chem. Mater. 2011, 23, 646-657.

4

Gruner, G. Carbon nanotube films for transparent and plastic electronics. J Mater Chem. 2006, 16, 3533-3539.

5

Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M, ; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; Rinzler, A. G. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273-1276.

6

Pang, S. P.; Hernandez, Y.; Feng, X. L.; Müllen, K. Graphene as transparent electrode material for organicelectronics. Adv. Mater. 2011, 23, 2779-2795.

7

Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 2010, 4, 611-622.

8

Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P, ; Cui, Y. Scalable coating and properties oftransparent, flexible, silver nanowireelectrodes. ACS Nano. 2010, 4, 2955-2963.

9

Wu, J. B.; Agrawal, M.; Becerril, H. A.; Bao, Z. N.; Liu, Z. F.; Chen, Y. S.; Peumans, P. Organic light-emitting diodes onsolution-processed graphenetransparent electrodes. ACS Nano. 2010, 4, 43-48.

10

Choi, M. -C.; Kim, Y.; Ha, C. -S. Polymers for flexible displays: From material selectionto device applications. Prog. Polym. Sci. . 2008, 33, 581-630.

11

Wang, P, -C.; Liu, L. -H.; Mengistie, D. A.; Li, K. H.; Wen, B. J.; Liu, T. S.; Chu, C. W. Transparent electrodes based on conducting polymers for displayapplications. Displays. 2013, 34, 301-314.

12

Zou, J. Y.; Yip, H. L.; Hau, S. K.; Jen, A. K. Y. Metal grid/ conducting polymer hybrid transparent electrode for inverted polymer solar cells. Appl. Phys. Lett. 2010, 96, 203301.

13

Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution-processed metal nanowiremesh transparent electrodes. Nano Lett, 2008, 8, 689-692.

14

Wu, H.; Kong, D. S.; Ruan, Z. C.; Hsu, P. C.; Wang, S.; Yu, Z. F.; Carney, T. J.; Hu, L. B.; Fan, S. H.; Cui, Y. A transparent electrode based on a metalnanotrough network. Nat. Nanotechnol. 2013, 8, 421-425.

15

Kang, J.; Kim, H.; Kim, K. S.; Lee, S. K.; Bae, S.; Ahn, J. H.; Kim, Y. J.; Choi, J. -B.; Hong, B. H. High-performance graphene-based transparent flexible heaters. Nano Lett. 2011, 11, 5154.

16

Geng, H. -Z.; Kim, K. K.; So, K. P.; Lee, Y. S.; Chang, Y.; Lee, Y. H. Effect of acid treatment on carbon nanotube-based flexible transparentconducting films. J. Am. Chem. Soc. 2007, 129, 7758-7759.

17

Li, Y.; Cui, P.; Wang, L. Y.; Lee, H.; Lee, K.; Lee, H. Highly bendable, conductive, and transparent film by an enhancedadhesion of silver nanowires. ACS Appl. Mater. Inter. 2013, 5, 9155-9160.

18

Kim, T.; Canlier, A.; Kim, G. H.; Choi, J.; Park, M.; Han, S. M. Electrostatic Spray Deposition of Highly Transparent Silver NanowireElectrode on Flexible Substrate. ACS Appl. Mater. Inter. 2012, 5, 788-794.

19

Scardaci, V.; Coull, R.; Lyons, P. E.; Rickard, D.; Coleman, J. N. Spray deposition of highly transparent, low-resistancenetworks of silver nanowires over large areas. Small 2011, 7, 2621-2628.

20

De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to opticalconductivity ratios. ACS Nano. 2009, 3, 1767-1774.

21

Luu, Q. N.; Doorn, J. M.; Berry, M. T.; Jiang, C.; Lin, C.; May, P. S. Preparation and optical properties of silver nanowires and silver-nanowirethin films. J. Colloid Interf. Sci. 2011, 356, 151-158.

22

Liu, C. -H.; Yu, X. Silver nanowire-based transparent, flexible, andconductive thin film. Nanoscale Res. Lett. 2011, 6, 75-82.

23

Kumar, A. B. V. K.; Bae, C. W.; Piao, L. H.; Kim, S. -H. Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze. Mater. Res. Bull. 2013, 48, 2944-2949.

24

Park, S. -E.; Kim, S.; Lee, D. -Y.; Kim, E.; Hwang, J. Fabrication of silver nanowire transparent electrodesusing electrohydrodynamic spray deposition for flexibleorganic solar cells. J. Mater. Chem. . A 2013, 1, 14286-14293.

25

Zhang, X.; Yan, X. B.; Chen, J. T.; Zhao, J. P. Large-size graphene microsheets as a protectivelayer for transparent conductive silver nanowirefilm heaters. Carbon 2014, 69, 437-443.

26

Kim, T. Y.; Kim, Y. W.; Lee, H. S.; Kim, H.; Yang, W. S.; Suh, K. S. Uniformly interconnected silver-nanowire networksfor transparent film heaters. Adv. Funct. Mater. 2013, 23, 1250-1255.

27

Yim, J. H.; Joe, S. Y.; Pang, C.; Lee, K. M.; Jeong, H.; Park, J. -Y.; Ahn, Y. H.; de Mello, J. C.; Lee, S. Fully solution-processedsemitransparent organic solar cellswith a silver nanowire cathode anda conducting polymer anode. ACS Nano. 2014, 8, 2857-2863.

28

Moon, I. K.; Kim, J. I.; Lee, H.; Hur, K.; Kim, W. C.; Lee, H. 2D graphene oxide nanosheets as anadhesive over-coating layer for flexibletransparent conductive electrodes. Sci. Rep. 2013, 3.1112-1120.

29

Khaligh, H. H.; Goldthorpe, I. A. Failure of silver nanowire transparent electrodesunder current flow. Nanoscale Res. Lett. 2013, 8, 235-241.

30

Jin, Y. X.; Deng, D. Y.; Cheng, Y. R.; Kong, L. Q.; Xiao, F. Annealing-free and strongly adhesive silvernanowire networks with long-term reliability byintroduction of a nonconductive andbiocompatible polymer binder. Nanoscale 2014, 6, 4812-4818.

31

Xu. S.; Poirier, G.; Yao, N. Conductivity tuning of a silver nanowire mesh using an UV light. Microsc. Microanal. 2013, 19, 1972-1973.

32

Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282-286.

File
12274_2014_696_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 September 2014
Revised: 12 December 2014
Accepted: 14 December 2014
Published: 03 March 2015
Issue date: June 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (Grant No. 2006-0050684).

Return