Journal Home > Volume 8 , Issue 7

Using nanoscale electrical-discharge-induced rapid Joule heating, we developed a method for ultrafast shape change and joining of small-volume materials. Shape change is dominated by surface-tension-driven convection in the transient liquid melt, giving an extremely high strain rate of ~106 s–1. In addition, the heat can be dissipated in small volumes within a few microseconds through thermal conduction, quenching the melt back to the solid state with cooling rates up to 108 K·s-1. We demonstrate that this approach can be utilized for the ultrafast welding of small-volume crystalline Mo (a refractory metal) and amorphous Cu49Zr51 without introducing obvious microstructural changes, distinguishing the process from bulk welding.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultrafast shape change and joining of small-volume materials using nanoscale electrical discharge

Show Author's information Cheng-Cai Wang1,5Qing-Jie Li1,4Liang Chen1,2Yong-Hong Cheng2Jun Sun1Zhi-Wei Shan1( )Ju Li1,3( )Evan Ma1,4( )
Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano) & Hysitron Applied Research Center in China (HARCC)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
State Key Laboratory of Electrical Insulation and Power EquipmentXi'an Jiaotong UniversityXi'an710049China
Department of Nuclear Science and Engineering and Department of Materials Science and EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMassachusetts02139USA
Department of Materials Science and EngineeringJohns Hopkins UniversityBaltimoreMaryland21218USA
SJS Limited101 Xihuan RoadJingzhouHubei434024China

Abstract

Using nanoscale electrical-discharge-induced rapid Joule heating, we developed a method for ultrafast shape change and joining of small-volume materials. Shape change is dominated by surface-tension-driven convection in the transient liquid melt, giving an extremely high strain rate of ~106 s–1. In addition, the heat can be dissipated in small volumes within a few microseconds through thermal conduction, quenching the melt back to the solid state with cooling rates up to 108 K·s-1. We demonstrate that this approach can be utilized for the ultrafast welding of small-volume crystalline Mo (a refractory metal) and amorphous Cu49Zr51 without introducing obvious microstructural changes, distinguishing the process from bulk welding.

Keywords: nanoscale, metal, electrical discharge, welding, metallic glass

References(32)

1

Uchic, M. D.; Dimiduk, D. M.; Florando, J. N.; Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 2004, 305, 986-989.

2

Shan, Z. W.; Mishra, R. K.; Asif, S. A. S.; Warren, O. L.; Minor, A. M. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 2008, 7, 115-119.

3

Yu, Q.; Shan, Z. W.; Li, J.; Huang, X.; Xiao, L.; Sun, J.; Ma, E. Strong crystal size effect on deformation twinning. Nature 2010, 463, 335-338.

4

Wang, C. C.; Mao, Y. W.; Shan, Z. W.; Dao, M.; Li, J.; Sun, J.; Ma, E.; Suresh, S. Real-time, high-resolution study of nanocrystallization and fatigue cracking in a cyclically strained metallic glass. Proc. Nat. Acad. Sci. U.S.A. 2013, 110, 19725-19730.

5

Tian, L.; Cheng, Y. Q.; Shan, Z. W.; Li, J.; Wang, C. C.; Han, X. D.; Sun, J.; Ma, E. Approaching the ideal elastic limit of metallic glasses. Nat. Comm. 2012, 3, 609.

6

Wang, C. C.; Ding, J.; Cheng, Y. Q.; Wan, J. C.; Tian, L.; Sun, J.; Shan, Z. W.; Li, J.; Ma, E. Sample size matters for al88fe7gd5 metallic glass: Smaller is stronger. Acta Mater. 2012, 60, 5370-5379.

7

Guo, H.; Yan, P. F.; Wang, Y. B.; Tan, J.; Zhang, Z. F.; Sui, M. L.; Ma, E. Tensile ductility and necking of metallic glass. Nat. Mater. 2007, 6, 735-739.

8

Jang, D. C.; Greer, J. R. Transition from a strong yet brittle to a stronger and ductile state by size reduction of metallic glasses. Nat. Mater. 2010, 9, 215-219.

9

Jiang, Q. K.; Liu, P.; Cao, Q. P.; Wang, C.; Li, X. L.; Gao, X. Y.; Wang, X. D.; Zhang, D. X.; Han, X. D.; Zhang, Z.; Jiang, J. Z. The effect of size on the elastic strain limit in Ni60Nb40 glassy films. Acta Mater. 2013, 61, 4689-4695.

10

Deng, Q. S.; Cheng, Y. Q.; Yue, Y. H.; Zhang, L.; Zhang, Z.; Han, X. D.; Ma, E. Uniform tensile elongation in framed submicron metallic glass specimen in the limit of suppressed shear banding. Acta Mater. 2011, 59, 6511-6518.

11

Kumar, G.; Tang, H. X.; Schroers, J. Nanomoulding with amorphous metals. Nature 2009, 457, 868-U128.

12

Schroers, J. Processing of bulk metallic glass. Adv. Mater. 2010, 22, 1566-1597.

13

Johnson, W. L.; Kaltenboeck, G.; Demetriou, M. D.; Schramm, J. P.; Liu, X.; Samwer, K.; Kim, C. P.; Hofmann, D. C. Beating crystallization in glass-forming metals by millisecond heating and processing. Science 2011, 332, 828-833.

14

Swiston, A. J.; Hufnagel, T. C.; Weihs, T. P. Joining bulk metallic glass using reactive multilayer foils. Scr. Mater. 2003, 48, 1575-1580.

15

Kawamura, Y.; Ohno, Y. Spark welding of Zr55Al10Ni5Cu30 bulk metallic glasses. Scr. Mater. 2001, 45, 127-132.

16

De Heer, W. A.; Chatelain, A.; Ugarte, D. A carbon nanotube field-emission electron source. Science 1995, 270, 1179- 1180.

17

Wang, Q. H.; Corrigan, T. D.; Dai, J. Y.; Chang, R. P. H.; Krauss, A. R. Field emission from nanotube bundle emitters at low fields. Appl. Phys. Lett. 1997, 70, 3308-3310.

18

Chatterton, P. A. A theoretical study of field emission initiated vacuum breakdown. Proc. Phys. Soc. London 1966, 88, 231-245.

19

Charbonnier, F. M.; Bennette, C. J.; Swanson, L. W. Electrical breakdown between metal electrodes in high vacuum. I. Theory. J. Appl. Phys. 1967, 38, 627-640.

20

Utsumi, T. Cathode- and anode-induced electrical breakdown in vacuum. J. Appl. Phys. 1967, 38, 2989.

21

Smith, W. A.; Elliot, C. T.; Pulfrey, D. L. A photographic study of electrical breakdown at small gaps in vacuum. J. Phys. D-Appl. Phys. 1969, 2, 1005.

22

Davies, D. K.; Biondi, M. A. Detection of electrode vapor between plane parallel copper electrodes prior to current amplification and breakdown in vacuum. J. Appl. Phys. 1970, 41, 88.

23

Iida, T.; Guthrie, R. Predictions for the sound velocity in various liquid metals at their melting point temperatures. Metal. and Materi. Trans. B 2009, 40, 959-966.

24

Zhong, L.; Wang, J.; Sheng, H.; Zhang, Z.; Mao, S. X. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 2014, 512, 177-180.

25

Jiang, Q. K.; Wang, X. D.; Nie, X. P.; Zhang, G. Q.; Ma, H.; Fecht, H. J.; Bednarcik, J.; Franz, H.; Liu, Y. G.; Cao, Q. P.; Jiang, J. Z. Zr-(Cu, Ag)-Al bulk metallic glasses. Acta Mater. 2008, 56, 1785-1796.

26

de Heer, W. A.; Poncharal, P.; Berger, C.; Gezo, J.; Song, Z. M.; Bettini, J.; Ugarte, D. Liquid carbon, carbon-glass beads, and the crystallization of carbon nanotubes. Science 2005, 307, 907-910.

27

Choy, C. L.; Tong, K. W.; Wong, H. K.; Leung, W. P. Thermal conductivity of amorphous alloys above room temperature J. Appl. Phys. 1991, 70, 4919-4925.

28

Lide, D. R. CRC handbook of chemistry and physics; CRC Press, 2009.

29

Mishin, Y.; Asta, M.; Li, J. Atomistic modeling of interfaces and their impact on microstructure and properties. Acta Mater. 2010, 58, 1117-1151.

30

Tian, L.; Li, J.; Sun, J.; Ma, E.; Shan, Z. -W. Visualizing size- dependent deformation mechanism transition in Sn. Scientific Reports 2013, 3, 2113.

31

Jin, C. H.; Suenaga, K.; Iijima, S. Plumbing carbon nanotubes. Nat. Nanotechnol. 2008, 3, 17-21.

32

Lu, Y.; Huang, J. Y.; Wang, C.; Sun, S. H.; Lou, J. Cold welding of ultrathin gold nanowires. Nat. Nanotechnol. 2010, 5, 218–224.

File
12274_2014_685_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 September 2014
Revised: 30 November 2014
Accepted: 07 December 2014
Published: 17 July 2015
Issue date: July 2015

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was supported by the grants from NSFC (Nos. 50925104, 51231005 and 51321003) and 973 (Program of China) (Nos. 2010CB631003, 2012CB619402). We also appreciate the support from the 111 Project of China (No. B06025). Both E. M. and J. L. carried out this work under an adjunct professorship at XJTU. J. L. acknowledges support by NSF (No. DMR- 1120901). E. M. was supported at JHU by US-NSF (No. DMR-0904188).

Return