AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Modulating the threshold voltage of oxide nanowire field-effect transistors by a Ga+ ion beam

Wenqing LiLei LiaoXiangheng Xiao( )Xinyue ZhaoZhigao DaiShishang GuoWei WuYing ShiJinxia XuFeng RenChangzhong Jiang
Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of EducationWuhan UniversityWuhan430072China
Show Author Information

Graphical Abstract

Abstract

In this paper, we report a method to change the threshold voltage of SnO2 and In2O3 nanowire transistors by Ga+ ion irradiation. Unlike the results in earlier reports, the threshold voltages of SnO2 and In2O3 nanowire field-effect transistors (FETs) shift in the negative gate voltage direction after Ga+ ion irradiation. Smaller threshold voltages, achieved by Ga+ ion irradiation, are required for high-performance and low-voltage operation. The threshold voltage shift can be attributed to the degradation of surface defects caused by Ga+ ion irradiation. After irradiation, the current on/off ratio declines slightly, but is still close to ~106. The results indicate that Ga+ ion beam irradiation plays a vital role in improving the performance of oxide nanowire FETs.

References

1

Goldberger, J.; Sirbuly, D. J.; Law, M.; Yang, P. D. ZnO nanowire transistors. J. Phys. Chem. B 2005, 109, 9–14.

2

Jiang, C. Y.; Sun, X. W.; Tan, K. W.; Lo, G. Q.; Kyaw, A. K. K.; Kwong, D. L. High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode. Appl. Phys. Lett. 2008, 92, 143101.

3

Kuang, Q.; Lao, C. S.; Wang, Z. L.; Xie, Z. X.; Zheng, L. S. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 2007, 129, 6070–6071.

4

Zhang, D. H.; Liu, Z. Q.; Li, C.; Tang, T.; Liu, X. L.; Han, S.; Lei, B.; Zhou, C. W. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 2004, 4, 1919–1924.

5

Park, C. H.; Lee, G.; Lee, K. H.; Im, S.; Lee, B. H.; Sung, M. M. Enhancing the retention properties of ZnO memory transistor by modifying the channel/ferroelectric polymer interface. Appl. Phys. Lett. 2009, 95, 153502.

6

Lin, M. C.; Chu, C. J.; Tsai, L. C.; Lin, H. Y.; Wu, C. S.; Wu, Y. P.; Wu, Y. N.; Shieh, D. B.; Su, Y. W.; Chen, C. D. Control and detection of organosilane polarization on nanowire field-effect transistors. Nano Lett. 2007, 7, 3656–3661.

7

Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 2006, 441, 489–493.

8

Ho, J. C.; Yerushalmi, R.; Jacobson, Z. A.; Fan, Z. Y.; Alley, R. L.; Javey, A. Controlled nanoscale doping of semiconductors via molecular monolayers. Nat. Mater. 2007, 7, 62–67.

9

Liao, L.; Bai, J. W.; Lin, Y. C.; Qu, Y. Q.; Huang, Y.; Duan, X. F. High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics. Adv. Mater. 2010, 22, 1941–1945.

10

Liao, L.; Lin, Y. C.; Bao, M. Q.; Cheng, R.; Bai, J. W.; Liu, Y.; Qu, Y. Q.; Wang, K. L.; Huang, Y.; Duan, X. F. High-speed graphene transistors with a self-aligned nanowire gate. Nature 2010, 467, 305–308.

11

Teweldebrhan, D.; Balandin, A. A. Modification of graphene properties due to electron-beam irradiation. Appl. Phys. Lett. 2009, 94, 013101.

12

Marquardt, C. W.; Dehm, S.; Vijayaraghavan, A.; Blatt, S.; Hennrich, F.; Krupke, R. Reversible metal-insulator transitions in metallic single-walled carbon nanotubes. Nano Lett. 2008, 8, 2767–2772.

13

Park, G. S.; Lee, E. K.; Lee, J. H.; Park, J.; Kim, S. K.; Li, X. S.; Park, J. C.; Chung, J. G.; Jeon, W. S.; Heo, S. et al. A high-density array of size-controlled silicon nanodots in a silicon oxide nanowire by electron-stimulated oxygen expulsion. Nano Lett. 2009, 9, 1780–1786.

14

Gómez-Navarro, C.; De Pablo, P. J.; Gómez-Herrero, J.; Biel, B.; Garcia-Vidal, F. J.; Rubio, A.; Flores, F. Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime. Nat. Mater. 2005, 4, 534–539.

15

Krasheninnikov, A. V.; Banhart, F. Engineering of nanostructured carbon materials with electron or ion beams. Nat. Mater. 2007, 6, 723–733.

16

Banhart, F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 1999, 62, 1181.

17

Vijayaraghavan, A.; Kanzaki, K.; Suzuki, S.; Kobayashi, Y.; Inokawa, H.; Ono, Y.; Kar, S.; Ajayan, P. M. Metal-semiconductor transition in single-walled carbon nanotubes induced by low-energy electron irradiation. Nano Lett. 2005, 5, 1575–1579.

18

Hong, W. -K.; Jo, G.; Sohn, J. I.; Park, W.; Choe, M.; Wang, G.; Kahng, Y. H.; Welland, M. E.; Lee, T. Tuning of the electronic characteristics of ZnO nanowire field effect transistors by proton irradiation. ACS Nano 2010, 4, 811–818.

19

Zeiner, C.; Lugstein, A.; Burchhart, T.; Pongratz, P.; Connell, J. G.; Lauhon, L. J.; Bertagnolli, E. Atypical self-activation of Ga dopant for Ge nanowire devices. Nano Lett. 2011, 11, 3108–3112.

20

Zhang, Z. Y.; Wang, S.; Ding, L.; Liang, X. L.; Pei, T.; Shen, J.; Xu, H. L.; Chen, Q.; Cui, R. L.; Li, Y. et al. Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. Nano Lett. 2008, 8, 3696–3701.

21

Yeom, D.; Keem, K.; Kang, J.; Jeong, D. -Y.; Yoon, C.; Kim, D.; Kim, S. NOT and NAND logic circuits composed of top-gate ZnO nanowire field-effect transistors with high-k Al2O3 gate layers. Nanotechnology 2008, 19, 265202.

22

Peercy, P. S.; Morosin, B. Pressure and temperature dependences of the Raman-active phonons in SnO2. Phys. Rev. B 1973, 7, 2779–2786.

23

Peng, X. S.; Zhang, L. D.; Meng, G. W.; Tian, Y. T.; Lin, Y.; Geng, B. Y.; Sun, S. H. Micro-Raman and infrared properties of SnO2 nanobelts synthesized from Sn and SiO2 powders. J. Appl. Phys. 2003, 93, 1760–1763.

24

Zhou, J. X.; Zhang, M. S.; Hong, J. M.; Yin, Z. Raman spectroscopic and photoluminescence study of single-crystalline SnO2 nanowires. Solid State Commun. 2006, 138, 242–246.

25

Sobotta, H.; Neumann, H.; Kühn, G.; Riede, V. Infrared lattice vibrations of In2O3. Cryst. Res. Technol. 1990, 25, 61–64.

26

Schwartz, G. P.; Sunder, W. A.; Griffiths, J. E. The In-P-O phase diagram: Construction and applications. J. Electrochem. Soc. 1982, 129, 1361–1367.

27

Li, Q. H.; Wan, Q.; Liang, Y. X.; Wang, T. H. Electronic transport through individual ZnO nanowires. Appl. Phys. Lett. 2004, 84, 4556.

28

Fan, Z. Y.; Wang, D. W.; Chang, P. -C.; Tseng, W. -Y.; Lu, J. G. ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 2004, 85, 5923.

29

Calarco, R.; Marso, M.; Richter, T.; Aykanat, A. I.; Meijers, R.; v. d. Hart, A.; Stoica, T.; Lüth, H. Size-dependent photoconductivity in MBE-grown GaN-nanowires. Nano Lett. 2005, 5, 981–984.

30

Wang, D. W.; Chang, Y. -L.; Wang, Q.; Cao, J.; Farmer, D. B.; Gordon, R. G.; Dai, H. J. Surface chemistry and electrical properties of germanium nanowires. J. Am. Chem. Soc. 2004, 126, 11602–11611.

31

Hong, W. -K.; Sohn, J. I.; Hwang, D. -K.; Kwon, S. -S.; Jo, G.; Song, S.; Kim, S. -M.; Ko, H. -J.; Park, S. -J.; Welland, M. E. et al. Tunable electronic transport characteristics of surface-architecture-controlled ZnO nanowire field effect transistors. Nano Lett. 2008, 8, 950–956.

Nano Research
Pages 1691-1698
Cite this article:
Li W, Liao L, Xiao X, et al. Modulating the threshold voltage of oxide nanowire field-effect transistors by a Ga+ ion beam. Nano Research, 2014, 7(11): 1691-1698. https://doi.org/10.1007/s12274-014-0529-5

584

Views

20

Crossref

N/A

Web of Science

21

Scopus

4

CSCD

Altmetrics

Received: 24 April 2014
Revised: 18 June 2014
Accepted: 29 June 2014
Published: 29 August 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return