Journal Home > Volume 3 , Issue 5

Uniform colloidal Bi2S3 nanodots and nanorods with different sizes have been prepared in a controllable manner via a hot injection method. X-ray diffraction (XRD) results show that the resulting nanocrystals have an orthorhombic structure. Both the diameter and length of the nanorods increase with increasing concentration of the precursors. All of the prepared Bi2S3 nanostructures show high efficiency in the photodegradation of rhodamine B, especially in the case of small sized nanodots—which is possibly due to their high surface area. The dynamics of the photocatalysis is also discussed.


menu
Abstract
Full text
Outline
About this article

Bi2S3 Nanostructures: A New Photocatalyst

Show Author's information Tong WuXinggui ZhouHua Zhang( )Xinhua Zhong( )
State Key Laboratory of Chemical EngineeringDepartment of ChemistryEast China University of Science and TechnologyShanghai200237China

Abstract

Uniform colloidal Bi2S3 nanodots and nanorods with different sizes have been prepared in a controllable manner via a hot injection method. X-ray diffraction (XRD) results show that the resulting nanocrystals have an orthorhombic structure. Both the diameter and length of the nanorods increase with increasing concentration of the precursors. All of the prepared Bi2S3 nanostructures show high efficiency in the photodegradation of rhodamine B, especially in the case of small sized nanodots—which is possibly due to their high surface area. The dynamics of the photocatalysis is also discussed.

Keywords: photocatalyst, nanostructures, Bi2S3, hot injection

References(35)

1

Prevot, A. B.; Basso, A.; Baiocchi, C.; Pazzi, M.; Marcí, G.; Augugliaro, V.; Palmisano, L.; Pramauro, E. Analytical control of photocatalytic treatments: Degradation of a sulfonated azo dye. Anal. Bioanal. Chem. 2004, 378, 214–220.

2

Ameta, S. C.; Chaudhary, R.; Ameta, R.; Vardia, J. Photocatalysis: A promising technology for wastewater treatment. J. Indian Chem. Soc. 2003, 80, 257–265.

3

Friesen, D. A.; Headley, J. V.; Langford, C. H. The photooxidative degradation of N-methylpyrrolidinone in the presence of Cs3PW12O40 and TiO2 colloid photocatalysts. Environ. Sci. Technol. 1999, 33, 3193–3198.

4

Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith, S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J. Am. Chem. Soc. 2009, 131, 4078–4084.

5

Liu, G.; Yang, H. G.; Wang, X. W.; Cheng, L. N.; Pan, J.; Lu, G. Q.; Cheng, H. M. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. J. Am. Chem. Soc. 2009, 131, 12868–12869.

6

Bian, Z. F.; Zhu, J.; Wang, S. H.; Cao, Y.; Qian, X. F.; Li, H. X. Self-assembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase. J. Phys. Chem. C 2008, 112, 6258–6262.

7

Zaleska, A.; Sobczak, J. W.; Grabowska, E.; Hupka, J. Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light. Appl. Catal. B 2008, 78, 92–100.

8

Bessekhouad, Y.; Robert, D.; Weber, J. V. Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2, and ZnMn2O4/TiO2 heterojunctions. Catal. Today 2005, 101, 315–321.

9

Gombac, V.; Rogatis, L. D.; Gasparotto, A.; Vicario, G.; Montini, T.; Barreca, D.; Balducci, G.; Fornasiero, P.; Tondello, E.; Graziani, M. TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications. Chem. Phys. 2007, 339, 111–123.

10

Zhang, F.; Wong, S. S. Controlled synthesis of semiconducting metal sulfide nanowires. Chem. Mater. 2009, 21, 4541–4554.

11

Muruganandham, M.; Kusumoto, Y. Synthesis of N, C codoped hierarchical porous microsphere ZnS as a visible light-responsive photocatalyst. J. Phys. Chem. C 2009, 113, 16144–16150.

12

Liu, X. W.; Fang, Z.; Zhang, X. J.; Zhang, W.; Wei, X. W.; Geng, B. Y. Preparation and characterization of Fe3O4/CdS nanocomposites and their use as recyclable photocatalysts. Cryst. Growth Des. 2009, 9, 197–202.

13

Vogel, R.; Hoyer, P.; Weller, H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem. 1994, 98, 3183–3188.

14

Bao, H.; Li, C. M.; Cui, X. Q.; Gan, Y.; Song, Q. L.; Guo, J. Synthesis of a highly ordered single-crystalline Bi2S3 nanowire array and its metal/semiconductor/metal back-to-back Schottky diode. Small 2008, 4, 1125–1129.

15

Rabin, O.; Perez, J. M.; Grimm, J.; Wojtkiewicz, G.; Weissleder, R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 2006, 5, 118–122.

16

Cademartiri, L.; Scotognella, F.; O'Brien, P. G.; Lotsch, B. V.; Thomson, J.; Petrov, S.; Kherani, N. P.; Ozin, G. A. Cross-linking Bi2S3 ultrathin nanowires: A platform for nanostructure formation and biomolecule detection. Nano Lett. 2009, 9, 1482–1486.

17

Yao, K.; Gong, W. W.; Hu, Y. F.; Liang, X. L.; Chen, Q.; Peng, L. M. Individual Bi2S3 nanowire-based room-temperature H2 sensor. J. Phys. Chem. C 2008, 112, 8721–8724.

18

Li, L. S.; Sun, N. J.; Huang, Y. Y.; Qin, Y.; Zhao, N. N.; Gao, J. J.; Li, M. H.; Zhou, H. H.; Qi, L. M. Topotactic transformation of single-crystalline precursor discs into disc-like Bi2S3 nanorod networks. Adv. Funct. Mater. 2008, 18, 1194–1201.

19

Bao, H. F.; Li, C. M.; Cui, X. Q.; Song, Q. L.; Yang, H. B.; Guo, J. Single-crystalline Bi2S3 nanowire network film and its optical switches. Nanotechnology 2008, 19, 335302.

20

Albuquerque, R.; Neves, M. C.; Mendonca, M. H.; Trindade, T.; Monteiro, O. C. Adsorption and catalytic properties of SiO2/Bi2S3 nanocomposites on the methylene blue photo-decolorization process. Colloids Surf. A 2008, 328, 107–113.

21

Stavila, V.; Whitmire, K. H.; Rusakova, I. Synthesis of Bi2S3 nanostructures from bismuth(Ⅲ) thiourea and thiosemicarbazide complexes. Chem. Mater. 2009, 21, 5456–5465.

22

Wang, D. S.; Hao, C. H.; Zheng, W.; Ma, X. L.; Chu, D. R.; Peng, Q.; Li, Y. D. Bi2S3 nanotubes: Facile synthesis and growth mechanism. Nano Res. 2009, 2, 130–134.

23

Fan, D. B.; Thomas, P. J.; O'Brien, P. Synthesis and assembly of Bi2S3 nanoparticles at the water–toluene interface. Chem. Phys. Lett. 2008, 465, 110–114.

24

Ye, C. H.; Meng, G. W.; Jiang, Z.; Wang, Y. H.; Wang, G. Z.; Zhang, L. D. Rational growth of Bi2S3 nanotubes from quasi-two-dimensional precursors. J. Am. Chem. Soc. 2002, 124, 15180–15181.

25

Quan, Z.; Yang, J.; Yang, P. P.; Wang, Z. L.; Li, C. X.; Lin, J. Facile synthesis and characterization of single crystalline Bi2S3 with various morphologies. Cryst. Growth Des. 2008, 8, 200–207.

26

Li, L. S.; Cao, R. G.; Wang, Z. J.; Li, J. J.; Qi, L. M. Template synthesis of hierarchical Bi2E3 (E = S, Se, Te) core–shell microspheres and their electrochemical and photoresponsive properties. J. Phys. Chem. C 2009, 113, 18075–18081.

27

Zhang, Y. L.; Zhu, J.; Song, X.; Zhong, X. H. Controlling the synthesis of CoO nanocrystals with various morphologies. J. Phys. Chem. C 2008, 112, 5322–5327.

28

Zhong, X. H.; Feng, Y. Y.; Zhang, Y. L.; Lieberwirth, I.; Knoll, W. Nonhydrolytic alcoholysis route to morphology-controlled ZnO nanocrystals. Small 2007, 3, 1194–1199.

29

Cademartiri, L.; Malakooti, R.; Brien, P. G. O.; Migliori, A.; Petrov, S.; Kherani, N. P.; Ozin, G. A. Large-scale synthesis of ultrathin Bi2S3 necklace nanowires. Angew. Chem. Int. Ed. 2008, 47, 3814–3817.

30

Malakooti, R.; Cademartiri, L.; Akçakir, Y.; Petrov, S.; Migliori, A.; Ozin, G. A. Shape-controlled Bi2S3 nanocrystals and their plasma polymerization into flexible films. Adv. Mater. 2006, 18, 2189–2194.

31

Wang, D. S.; Zheng, W.; Hao, C. H.; Peng, Q.; Li, Y. D. A synthetic method for transition-metal chalcogenide nanocrystals. Chem. Eur. J. 2009, 15, 1870–1875.

32

Wang, Y.; Chen, J.; Wang, P.; Chen, L.; Chen, Y. B.; Wu, L. M. Syntheses, growth mechanism, and optical properties of [001] growing Bi2S3 nanorods. J. Phys. Chem. C 2009, 113, 16009–16014.

33

Lou, W. J.; Chen, M.; Wang, X. B.; Liu, W. M. Novel single-source precursors approach to prepare highly uniform Bi2S3 and Sb2S3 nanorods via a solvothermal treatment. Chem. Mater. 2007, 19, 872–878.

34

Kim, D.; Shimpi, P.; Gao, P. X. Zigzag zinc blende ZnS nanowires: Large scale synthesis and their structure evolution induced by electron irradiation. Nano Res. 2009, 2, 966–974.

35

Tsunoyama, H.; Ichikuni, N.; Tsukuda, T. Microfluidic synthesis and catalytic application of PVP-stabilized, ~1 nm gold clusters. Langmuir 2008, 24, 11327–11330.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 26 February 2010
Revised: 28 March 2010
Accepted: 30 March 2010
Published: 01 May 2010
Issue date: May 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 20771037 and 20871047), the Shuguang Project (No. 06SG33), SRFDP (No. 20070251014), the State Key Laboratory of Chemical Engineering (No. SKL-ChE-09C01) and the Program for Professors by Special Appointment at Shanghai Institutions of Higher Learning.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return