Journal Home > Volume 2 , Issue 11

Materials and device architecture innovations are essential for further enhancing the performance of solar cells while potentially enabling their large-scale integration as a viable source of alternative energy. In this regard, tremendous research has been devoted in recent years with continuous progress in the field. In this article, we review the recent advancements in nanopillar-based photovoltaics while discussing the future challenges and prospects. Nanopillar arrays provide unique advantages over thin films in the areas of optical properties and carrier collection, arising from their three-dimensional geometry. The choice of the material system, however, is essential in order to gain the advantage of the large surface/interface area associated with nanopillars with the constraints different from those of the thin film devices.


menu
Abstract
Full text
Outline
About this article

Challenges and Prospects of Nanopillar-Based Solar Cells

Show Author's information Zhiyong Fan1,2,3Daniel J. Ruebusch1,2,3Asghar A. Rathore1,2,3Rehan Kapadia1,2,3Onur Ergen1,2,3Paul W. Leu1,2,3Ali Javey1,2,3( )
Department of Electrical Engineering and Computer Sciences University of California at BerkeleyBerkeley, CA 94720 USA
Berkeley Sensor and Actuator Center University of California at BerkeleyBerkeley, CA 94720 USA
Materials Sciences Division Lawrence Berkeley National LaboratoryBerkeley, CA 94720 USA

Abstract

Materials and device architecture innovations are essential for further enhancing the performance of solar cells while potentially enabling their large-scale integration as a viable source of alternative energy. In this regard, tremendous research has been devoted in recent years with continuous progress in the field. In this article, we review the recent advancements in nanopillar-based photovoltaics while discussing the future challenges and prospects. Nanopillar arrays provide unique advantages over thin films in the areas of optical properties and carrier collection, arising from their three-dimensional geometry. The choice of the material system, however, is essential in order to gain the advantage of the large surface/interface area associated with nanopillars with the constraints different from those of the thin film devices.

Keywords: solar cells, Nanopillar-based photovoltaics, nanowires (NWs)

References(91)

1

Lu, W.; Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 2007, 6, 841–850.

2

Javey, A.; Nam, S.; Friedman, R. S.; Yan, H.; Lieber, C. M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 2007, 7, 773–777.

3

Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 2006, 441, 489–493.

4

Wang, D.; Dai, H. Germanium nanowires: From synthesis, surface chemistry, and assembly to devices. Appl. Phys. A-Mater. 2006, 85, 217–225.

5

Javey, A. The 2008 Kavli Prize in Nanoscience: Carbon nanotubes. ACS Nano 2008, 2, 1329–1335.

6

Thelander, C.; Rehnstedt, C.; Froberg, L. E.; Lind, E.; Martensson, T.; Caroff, P.; Lowgren, T.; Ohlsson, B. J.; Samuelson, L.; Wernersson, L. E. Development of a vertical wrap-gated InAs FET. IEEE T. Electron Dev. 2008, 11, 3030–3036.

7

Ford, A. C.; Ho, J. C.; Chueh, Y. L.; Tseng, Y. C.; Fan, Z. Y.; Guo, J.; Bokor, J.; Javey, A. Diameter-dependent electron mobility of InAs nanowires. Nano Lett. 2009, 9, 360–365.

8

Zhong, Z. H.; Qian, F.; Wang, D. L.; Lieber, C. M. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 2003, 3, 343–346.

9

Qian, F.; Gradecak, S.; Li, Y.; Wen, C. Y.; Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 2005, 5, 2287–2291.

10

Fan, Z. Y.; Chang, P. C.; Lu, J. G.; Walter, E. C.; Penner, R. M.; Lin, C. H.; Lee, H. P. Photoluminescence and polarized photodetection of single ZnO nanowires. Appl. Phys. Lett. 2004, 85, 6128–6130.

11

Fan, Z. Y.; Wang, D. W.; Chang, P. C.; Tseng, W. Y.; Lu, J. G. ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 2004, 85, 5923–5925.

12

Fan, Z. Y.; Lu, J. G. Gate-refreshable nanowire chemical sensors. Appl. Phys. Lett. 2005, 86, 123510.

13

Hahm, J.; Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51–54.

14

Zhang, D. H.; Liu, Z. Q.; Li, C.; Tang, T.; Liu, X. L.; Han, S.; Lei, B.; Zhou, C. W. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 2004, 4, 1919–1924.

15

Fan, Z. Y.; Ho, J. C.; Jacobson, Z. A.; Razavi, H.; Javey, A. Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 11066–11070.

16

Chen, P.; Shen, G.; Zhou, C. Chemical sensors and electronic noses based on 1-D metal oxide nanostructures. IEEE T. Nanotechnol. 2008, 7, 668–682.

17

Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.

18

Yan, Q.; Cheng, H.; Zhou, W.; Hng, H. H.; Yin, F.; Boey, F. Y. C.; Ma, J. A simple chemical approach for PbTe nanowires with enhanced thermoelectric properties. Chem. Mat. 2008, 20, 6298–6300.

19

Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

20

Fan, Z. Y.; Razavi, H.; Do, J. W.; Moriwaki, A.; Ergen, O.; Chueh, Y. L.; Leu, P. W.; Ho, J. C.; Takahashi, T.; Reichertz, L. A.; Neale, S.; Yu, K.; Wu, M.; Ager, J. W.; Javey, A. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 2009, 8, 648–653.

21

Czaban, J. A.; Thompson, D. A.; LaPierre, R. R. GaAs core-shell nanowires for photovoltaic applications. Nano Lett. 2009, 9, 148–154.

22

Garnett, E. C.; Yang, P. D. Silicon nanowire radial p–n junction solar cells. J. Am. Chem. Soc. 2008, 130, 9224–9225.

23

Kelzenberg, M. D.; Turner-Evans, D. B.; Kayes, B. M.; Filler, M. A.; Putnam, M. C.; Lewis, N. S.; Atwater, H. A. Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 2008, 8, 710–714.

24

Martinson, A. B. F.; Elam, J. W.; Liu, J.; Pellin, M. J.; Marks, T. J.; Hupp, J. T. Radial electron collection in dye-sensitized solar cells. Nano Lett. 2008, 8, 2862–2866.

25

Stelzner, T.; Pietsch, M.; Andra, G.; Falk, F.; Ose, E.; Christiansen, S. Silicon nanowire-based solar cells. Nanotechnology 2008, 19, 295203.

26

Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 885–889.

27

Tsakalakos, L.; Balch, J.; Fronheiser, J.; Korevaar, B. A.; Sulima, O.; Rand, J. Silicon nanowire solar cells. Appl. Phys. Lett. 2007, 91, 233117.

28

Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.

29

Song, M. Y.; Ahn, Y. R.; Jo, S. M.; Kim, D. Y.; Ahn, J. P. TiO2 single-crystalline nanorod electrode for quasi-solid-state dye-sensitized solar cells. Appl. Phys. Lett. 2005, 87, 113113.

30

Colombo, C.; Heiss, M.; Gratzel, M.; Morral, A. F. I. Gallium arsenide p–i–n radial structures for photovoltaic applications. Appl. Phys. Lett. 2009, 94, 173108.

31

Kempa, T. J.; Tian, B.; Kim, D. R.; Hu, J.; Zheng, X.; Lieber, C. M. Single and tandem axial p–i–n nanowire photovoltaic devices. Nano Lett. 2008, 8, 3456–3460.

32

Tang, Y. B.; Chen, Z. H.; Song, H. S.; Lee, C. S.; Cong, H. T.; Cheng, H. M.; Zhang, W. J.; Bello, I.; Lee, S. T. Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells. Nano Lett. 2008, 8, 4191–4195.

33

Greene, L. E.; Law, M.; Yuhas, B. D.; Yang, P. D. ZnO-TiO2 core-shell nanorod/P3HT solar cells. J. Phys. Chem. C 2007, 111, 18451–18456.

34

Peng, K. Q.; Xu, Y.; Wu, Y.; Yan, Y. J.; Lee, S. T.; Zhu, J. Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 2005, 1, 1062–1067.

35

Muskens, O. L.; Rivas, J. G.; Algra, R. E.; Bakkers, E. P. A. M.; Lagendijk, A. Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett. 2008, 8, 2638–2642.

36

Zhu, J.; Yu, Z. F.; Burkhard, G. F.; Hsu, C. M.; Connor, S. T.; Xu, Y. Q.; Wang, Q.; McGehee, M.; Fan, S. H.; Cui, Y. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 2009, 9, 279–282.

37

Stiebig, H.; Senoussaoui, N.; Zahren, C.; Haase, C.; Muller, J. Silicon thin-film solar cells with rectangular-shaped grating couplers. Prog. Photovoltaics 2006, 14, 13–24.

38

Fahrenbruch, A. L.; Bube, R. H. In Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion. Academic Press: New York, 1983.

39

Kayes, B. M.; Atwater, H. A.; Lewis, N. S. Comparison of the device physics principles of planar and radial p–n junction nanorod solar cells. J. Appl. Phys. 2005, 97, 114302.

40

Kosyachenko, L. A.; Savchuk, A. I.; Grushko, E. V. Dependence of efficiency of thin-film CdS/CdTe solar cell on parameters of absorber layer and barrier structure. Thin Solid Films 2009, 517, 2386–2391.

41

van Nieuwenhuysen, K.; Duerinckx, F.; Kuzma, I.; Payo, M. R.; Beaucarne, G.; Poortmans, J. Epitaxially grown emitters for thin film crystalline silicon solar cells. Thin Solid Films 2008, 517, 383–384.

42

Marsillac, S.; Parikh, V. Y.; Compaan, A. D. Ultra-thin bifacial CdTe solar cell. Sol. Energ. Mat. Sol. C. 2007, 91, 1398–1402.

43

Romeo, A.; Khrypunov, G.; Galassini, S.; Zogg, H.; Tiwari, A. N. Bifacial configurations for CdTe solar cells. Sol. Energ. Mat. Sol. C. 2007, 91, 1388–1391.

44

Beaucarne, G.; Duerinckx, F.; Kuzma, I.; van Nieuwenhuysen, K.; Kim, H. J.; Poortmans, J. Epitaxial thin-film Si solar cells. Thin Solid Films 2006, 533–542.

45

Schermer, J. J.; Mulder, P.; Bauhuis, G. J.; Larsen, P. K.; Oomen, G.; Bongers, E. Thin-film GaAs epitaxial life-off solar cells for space applications. Prog. Photovoltaics 2005, 13, 587–596.

46

Bridge, C. J.; Dawson, P.; Buckle, P. D.; Ozsan, M. E. Photoluminescence spectroscopy and decay time measurements of polycrystalline thin film CdTe. J. Appl. Phys. 2000, 88, 6451–6456.

47

Gunawan, O.; Guha, S. Characteristics of vapor-liquid-solid grown silicon nanowire solar cells. Sol. Energ. Mat. Sol. C. 2009, 93, 1388–1393.

48

Anandan, S.; Wen, X. G.; Yang, S. H. Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Mater. Chem. Phys. 2005, 93, 35–40.

49

Jiu, J. T.; Wang, F. M.; Isoda, S.; Adachi, M. Highly efficient dye-sensitized solar cells based on single crystalline TiO2 nanorod film. Chem. Lett. 2005, 34, 1506–1507.

50

Adachi, M.; Murata, Y.; Takao, J.; Jiu, J. T.; Sakamoto, M.; Wang, F. M. Highly efficient dyesensitized solar cells with a titania thin-film electrode composed of a network structure of singlecrystal-like TiO2 nanowires made by the "oriented attachment" mechanism. J. Am. Chem. Soc. 2004, 126, 14943–14949.

51

Sharma, A. K.; Agarwal, S. K.; Singh, S. N. Determination of front surface recombination velocity of silicon solar cells using the short-wavelength spectral response. Sol. Energ. Mat. Sol. C. 2007, 91, 1515–1520.

52

Sabbah, A. J.; Riffe, D. M. Measurement of silicon surface recombination velocity using ultrafast pump-probe reflectivity in the near infrared. J. Appl. Phys. 2000, 88, 6954–6956.

53

Rowe, M. W.; Liu, H. L.; Williams, G. P.; Williams, R. T. Picosecond photoelectron-spectroscopy of excited-states at $\mathrm{Si}(111) \sqrt{3} \times \sqrt{3} R 30^{\circ}-\mathrm{B}$, Si(111)7×7, Si(100)2×1, and laser-annealed Si(111)1×1 surfaces. Phys. Rev. B 1993, 47, 2048–2064.

54

Passlack, M.; Hong, M.; Mannaerts, J. P.; Kwo, J. R.; Tu, L. W. Recombination velocity at oxide-GaAs interfaces fabricated by in situ molecular beam epitaxy. Appl. Phys. Lett. 1996, 68, 3605–3607.

55

Jastrzebski, L.; Lagowski, J.; Gatos, H. C. Application of scanning electron-microscopy to determination of surface recombination velocity: GaAs. Appl. Phys. Lett. 1975, 27, 537–539.

56

Rosenwaks, Y.; Burstein, L.; Shapira, Y.; Huppert, D. Effects of reactive versus unreactive metals on the surface recombination velocity at Cds and CdSe(1120) interfaces. Appl. Phys. Lett. 1990, 57, 458–460.

57

Delgadillo, I.; Vargas, M.; CruzOrea, A.; AlvaradoGil, J. J.; Baquero, R.; SanchezSinencio, F.; Vargas, H. Photoacoustic CdTe surface characterization. Appl. Phys. B-Lasers O. 1997, 64, 97–101.

58

Gottschalch, V.; Wagner, G.; Bauer, J.; Paetzelt, H.; Shirnow, M. VLS growth of GaN nanowires on various substrates. J. Cryst. Growth 2008, 310, 5123–5128.

59

Chen, Y. Q.; Cui, X. F.; Zhang, K.; Pan, D. Y.; Zhang, S. Y.; Wang, B.; Hou, J. G. Bulk-quantity synthesis and self-catalytic VLS growth of SnO2 nanowires by lower-temperature evaporation. Chem. Phys. Lett. 2003, 369, 16–20.

60

Zhang, X.; Lew, K.; Nimmatoori, P.; Redwing, J. M.; Dickey, E. C. Diameter-dependent composition of vapor-liquid-solid grown Si1-xGex nanowires. Nano Lett. 2007, 7, 3241–3245.

61

Li, S. Y.; Lin, P.; Lee, C. Y.; Tseng, T. Y. Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process. J. Appl. Phys. 2004, 95, 3711–3716.

62

Wu, Y. Y.; Yang, P. D. Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 2001, 123, 3165–3166.

63

Lauhon, L. J.; Gudiksen, M. S.; Lieber, C. M. Semiconductor nanowire heterostructures. Philos. T. R. Soc. A 2004, 362, 1247–1260.

64

Lauhon, L. J.; Gudiksen, M. S.; Wang, C. L.; Lieber, C. M. Epitaxial core-shell and coremultishell nanowire heterostructures. Nature 2002, 420, 57–61.

65

Durgun, E.; Akman, N.; Ataca, C.; Ciraci, S. Atomic and electronic structures of doped silicon nanowires: A first-principles study. Phys. Rev. B 2007, 76, 245323.

66

Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 2001, 123, 1613–1624.

67

Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchii, T.; Gratzel, M. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat. Mater. 2003, 2, 402–407.

68

Rensmo, H.; Keis, K.; Lindstrom, H.; Sodergren, S.; Solbrand, A.; Hagfeldt, A.; Lindquist, S. E.; Wang, L. N.; Muhammed, M. High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J. Phys. Chem. B 1997, 101, 2598–2601.

69

Tennakone, K.; Kumara, G. R. R. A.; Kottegoda, I. R. M.; Perera, V. P. S. An efficient dyesensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chem. Commun. 1999, 15–16.

70

Keis, K.; Magnusson, E.; Lindstrom, H.; Lindquist, S. E.; Hagfeldt, A. A 5% efficient photo electrochemical solar cell based on nanostructured ZnO electrodes. Sol. Energ. Mat. Sol. C. 2002, 73, 51–58.

71

Gregg, B. A. Excitonic solar cells. J. Phys. Chem. B 2003, 107, 4688–4698.

72

Hara, K.; Wang, Z. S.; Sato, T.; Furube, A.; Katoh, R.; Sugihara, H.; Dan-Oh, Y.; Kasada, C.; Shinpo, A.; Suga, S. Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B 2005, 109, 15476–15482.

73

Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J. Am. Chem. Soc. 2004, 126, 12218–12219.

74

Altobello, S.; Argazzi, R.; Caramori, S.; Contado, C.; Da Fre, S.; Rubino, P.; Chone, C.; Larramona, G.; Bignozzi, C. A. Sensitization of nanocrystalline TiO2 with black absorbers based on Os and Ru polypyridine complexes. J. Am. Chem. Soc. 2005, 127, 15342–15343.

75

Robertson, N. Optimizing dyes for dye-sensitized solar cells. Angew. Chem. Int. Edit. 2006, 45, 2338–2345.

76

Zukalova, M.; Zukal, A.; Kavan, L.; Nazeeruddin, M. K.; Liska, P.; Gratzel, M. Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano Lett. 2005, 5, 1789–1792.

77

Green, A. N. M.; Palomares, E.; Haque, S. A.; Kroon, J. M.; Durrant, J. R. Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films. J. Phys. Chem. B 2005, 109, 12525–12533.

78

Fisher, A. C.; Peter, L. M.; Ponomarev, E. A.; Walker, A. B.; Wijayantha, K. G. U. Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanacrystalline TiO2 solar cells. J. Phys. Chem. B 2000, 104, 949–958.

79

Oekermann, T.; Zhang, D.; Yoshida, T.; Minoura, H. Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization. J. Phys. Chem. B 2004, 108, 2227–2235.

80

Nelson, J. Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes. Phys. Rev. B 1999, 59, 15374–15380.

81

van de Lagemaat, J.; Frank, A. J. Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: Transient photocurrent and random-walk modeling studies. J. Phys. Chem. B 2001, 105, 11194–11205.

82

Kopidakis, N.; Benkstein, K. D.; van de Lagemaat, J.; Frank, A. J. Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 2003, 107, 11307–11315.

83

Zaban, A.; Chen, S. G.; Chappel, S.; Gregg, B. A. Bilayer nanoporous electrodes for dye sensitized solar cells. Chem. Commun. 2000, 2231–2232.

84

Tennakone, K.; Bandara, J.; Bandaranayake, P. K. M.; Kumara, G. R. A.; Konno, A. Enhanced efficiency of a dye-sensitized solar cell made from MgO-coated nanocrystalline SnO2. Jpn. J. Appl. Phys. 2001, 40, L732–L734.

85

Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. J. Am. Chem. Soc. 2003, 125, 475–482.

86

Diamant, Y.; Chappel, S.; Chen, S. G.; Melamed, O.; Zaban, A. Core-shell nanoporous electrode for dye sensitized solar cells: The effect of shell characteristics on the electronic properties of the electrode. Coord. Chem. Rev. 2004, 248, 1271–1276.

87

Bandaranayake, K. M. P.; Indika Senevirathna, M. K. I.; Prasad Weligamuwa, P. M. G. M. P.; Tennakone, K. Dye-sensitized solar cells made from nanocrystalline TiO2 films coated with outer layers of different oxide materials. Coord. Chem. Rev. 2004, 248, 1277–1281.

88

Law, M.; Greene, L. E.; Radenovic, A.; Kuykendall, T.; Liphardt, J.; Yang, P. D. ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. J. Phys. Chem. B 2006, 110, 22652–22663.

89

Mikulskas, I.; Juodkazis, S.; Tomasiunas, R.; Dumas, J. G. Aluminum oxide photonic crystals grown by a new hybrid method. Adv. Mater. 2001, 13, 1574–1577.

DOI
90

Fan, Z. Y.; Dutta, D.; Chien, C. J.; Chen, H. Y.; Brown, E. C.; Chang, P. C.; Lu, J. G. Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays. Appl. Phys. Lett. 2006, 89, 213110.

91

Nielsch, K.; Muller, F.; Li, A. P.; Gosele, U. Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Adv. Mater. 2000, 12, 582–586.

DOI
Publication history
Copyright
Rights and permissions

Publication history

Received: 13 September 2009
Revised: 26 September 2009
Accepted: 26 September 2009
Published: 11 November 2009
Issue date: November 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Rights and permissions

This article is published with open access at Springerlink.com

Return