Journal Home > Volume 2 , Issue 5

The thermoelectric properties of individual solution-phase synthesized p-type PbSe nanowires have been examined. The nanowires showed near degenerately doped charge carrier concentrations. Compared to the bulk, the PbSe nanowires exhibited a similar Seebeck coefficient and a significant reduction in thermal conductivity in the temperature range 20 K to 300 K. Thermal annealing of the PbSe nanowires allowed their thermoelectric properties to be controllably tuned by increasing their carrier concentration or hole mobility. After optimal annealing, single PbSe nanowires exhibited a thermoelectric figure of merit (ZT) of 0.12 at room temperature.


menu
Abstract
Full text
Outline
About this article

Thermoelectric Properties of p-Type PbSe Nanowires

Show Author's information Wenjie Liang1,3Oded Rabin1,4Allon I. Hochbaum1Melissa Fardy1Minjuan Zhang2Peidong Yang1( )
Department of ChemistryUniversity of CaliforniaBerkeleyCA94720USA
Materials Research DepartmentToyota Technical CenterToyota Motor Engineering & Manufacturing North America (TEMA) Inc.1555 Woodridge Ave.Ann ArborMI48105USA
Current Address: Institute of PhysicsChinese Academy of SciencesBeijing100080China
Current Address: Department of Materials Science and Engineeringthe Institute for Research in Electronics and Applied PhysicsUniversity of MarylandCollege ParkMD20742USA

Abstract

The thermoelectric properties of individual solution-phase synthesized p-type PbSe nanowires have been examined. The nanowires showed near degenerately doped charge carrier concentrations. Compared to the bulk, the PbSe nanowires exhibited a similar Seebeck coefficient and a significant reduction in thermal conductivity in the temperature range 20 K to 300 K. Thermal annealing of the PbSe nanowires allowed their thermoelectric properties to be controllably tuned by increasing their carrier concentration or hole mobility. After optimal annealing, single PbSe nanowires exhibited a thermoelectric figure of merit (ZT) of 0.12 at room temperature.

Keywords: thermal conductivity, Nanowire, thermoelectrics, thermopower, lead chalcogenide

References(22)

1

Majumdar, A. Thermoelectricity in semiconductor nanostructures. Science 2004, 303, 777–778.

2

Goldsmid, H. Thermoelectric Refrigeration; Plenum Press: New York, 1964.

DOI
3

Hicks, L. D.; Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993, 47, 12727–12731.

4

Hicks, L. D.; Dresselhaus, M. S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 1993, 47, 16631–16634.

5

Harman, T. C.; Taylor, P. J.; Walsh, M. P.; LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 2002, 297, 2229–2232.

6

Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O'Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 507–602.

7

Hochbaum, A.I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnet, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.

8

Boukai, A.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J. K.; Goddard, W. A.; Heath, J. R. Silicon nanowires as efficient thermoelectric materials. Nature 2008, 451, 167–169.

9

Wang, R. Y.; Feser, J. P.; Lee, J. S.; Talapin D. V.; Segalman, R.; Majumdar, A. Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. Nano Lett. 2008, 8, 2283–2288.

10

Hsu, K.F.; Loo, S. Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 2004, 303, 818–821.

11

Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y. C.; Minnich, A.; Yu, B.; Yan, X.; Wang, D. Z.; Muto, A.; Vashaee, D; Chen, X. Y.; Liu, J. M.; Dresselhaus, M. S; Chen, G.; Ren, Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320, 634–638.

12

Cho, K.; Talapin, D. V.; Gaschler, W.; Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 2005, 127, 7140–7147.

13

Zou, J.; Balandin, A. Phonon heat conduction in a semiconductor nanowire. J. Appl. Phys. 2001, 89, 2932–2938.

14

Moore, A. L.; Saha, S. K.; Prasher, R. S.; Li, S. Phonon backscattering and thermal conductivity suppression in sawtooth nanowires. Appl. Phys. Lett. 2008, 93, 083112.

15

Liang, W. J.; Hochbaum, A. I.; Fardy, M.; Rabin, O.; Zhang, M. J.; Yang, P. D. Field-effect modulation of Seebeck coefficient in single PbSe nanowires. Nano Lett. 2009, 9, 1689–1693.

16

Abrams, H.; Tauber, R. N. Thermoelectric power of single-crystal p-type PbSe. J. Appl. Phys. 1969, 40, 3868–3870.

17

Li, D.; Wu, Y.; Kim, P.; Shi, L.; Yang, P. D.; Majumdar, A. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 2003, 83, 2934–2936.

18

Fardy, M. Hochbaum, A.; Goldberger, J.; Zhang, M. M.; Yang, P. D. Synthesis and thermoelectrical characterization of lead chalcogenide nanowires. Adv. Mater. 2007, 19, 3047–3051.

19

Shi, L.; Li, D. Y.; Yu, C. H.; Jang, W. Y.; Kim. D.; Yao, Z.; Kim, P.; Majumdar, A. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transf. 2003, 125, 881–888.

20

Allgaier, R.; Scanlon, W. Moblity of electrons and holes in PbS, PbSe, and PbTe between room temperature and 4.2-degrees-K. Phys. Rev. 1958, 111, 1029–1037.

21

Tang, Y. H.; Zheng, Y. F.; Lee, C. S.; Lee, S. T. A simple route to annihilate defects in silicon nanowires. Chem. Phys. Lett. 2000, 328, 346–349.

22

Gray, D. E. American Institute of Physics Handbook, 3rd ed; McGraw-Hill: New York, 1972.

Publication history
Copyright
Rights and permissions

Publication history

Received: 12 February 2009
Revised: 11 March 2009
Accepted: 11 March 2009
Published: 01 May 2009
Issue date: May 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Rights and permissions

This article is published with open access at Springerlink.com

Return