Journal Home > Volume 1 , Issue 4

Semiconductor nanocrystals (dots, rods, wires, etc.) exhibit a wide range of electrical and optical properties that differ from those of the corresponding bulk materials. These properties depend on both nanocrystal size and shape. Compared with nanodots, nanorods have an additional degree of freedom, the length or aspect ratio, and reduced symmetry, which leads to anisotropic properties. In this paper, we report the Au nanoparticle-catalyzed colloidal synthesis of monodisperse CdS nanorods. Based on systematic high resolution transmission electron microscopy studies, we propose a growth mechanism for these nanorods.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synthesis of Monodisperse CdS Nanorods Catalyzed by Au Nanoparticles

Show Author's information Hongwang Zhang1Savas Delikanli2Yueling Qin2Shuli He2,3Mark Swihart1( )Hao Zeng2( )
Department of Chemical and Biological EngineeringUniversity at Buffalo, SUNY, BuffaloNY14260USA
Department of PhysicsUniversity at Buffalo, SUNY, BuffaloNY14260USA
Department of PhysicsCapital Normal UniversityBeijing100048China

Abstract

Semiconductor nanocrystals (dots, rods, wires, etc.) exhibit a wide range of electrical and optical properties that differ from those of the corresponding bulk materials. These properties depend on both nanocrystal size and shape. Compared with nanodots, nanorods have an additional degree of freedom, the length or aspect ratio, and reduced symmetry, which leads to anisotropic properties. In this paper, we report the Au nanoparticle-catalyzed colloidal synthesis of monodisperse CdS nanorods. Based on systematic high resolution transmission electron microscopy studies, we propose a growth mechanism for these nanorods.

Keywords: Nanorods, monodisperse, catalytic growth, solution phase synthesis

References(32)

1

Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933-937.

2

Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435-445.

3

Cozzoli, P. D.; Pellegrino, T.; Manna, L. Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem. Soc. Rev. 2006, 35, 1195-1208.

4

Murphy, C. J.; Jana, N. R. Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater. 2002, 14, 80-82.

DOI
5

Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59-61.

6

Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382-385.

7

Manna, L.; Scher, E. C.; Alivisatos, A. P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122, 12700-12706.

8

Trentler, T. J.; Goel, S. C.; Hickman, K. M.; Viano, A. M.; Chiang, M. Y.; Beatty, A. M.; Gibbons, P. C.; Buhro, W. E. Solution-liquid-solid growth of indium phosphide fibers from organometallic precursors: Elucidation of molecular and nonmolecular components of the pathway. J. Am. Chem. Soc. 1997, 119, 2172-2181.

9

Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E. Solution-liquid-solid growth of crystalline III-V semiconductors-an analogy to vapor-liquid-solid growth. Science 1995, 270, 1791-1794.

10

Kan, S. H.; Aharoni, A.; Mokari, T.; Banin, U. Shape control of III-V semiconductor nanocrystals: Synthesis and properties of InAs quantum rods. Faraday Discuss. 2004, 125, 23-38.

11

Hull, K. L.; Grebinski, J. W.; Kosel, T. H.; Kuno, M. Induced branching in confined PbSe nanowires. Chem. Mater. 2005, 17, 4416-4425.

12

Shi, W. L.; Sahoo, Y.; Zeng, H.; Ding, Y.; Swihart, M. T.; Prasad, P. N. Anisotropic growth of PbSe nanocrystals on Au-Fe3O4 hybrid nanoparticles. Adv. Mater. 2006, 18, 1889-1894.

13

Grebinski, J. W.; Richter, K. L.; Zhang, J.; Kosel, T. H.; Kuno, M. Synthesis and characterization of Au/Bi core/shell nanocrystals: A precursor toward II-VI nanowires. J. Phys. Chem. B 2004, 108, 9745-9751.

14

Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A. Control of thickness and orientation of solution-grown silicon nanowires. Science 2000, 287, 1471-1473.

15

Zhang, J. Z. Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles. J. Phys. Chem. B 2000, 104, 7239-7253.

16

Shen, G. Z.; Cho, J. H.; Yoo, J. K.; Yi, G. C.; Lee, C. J. Synthesis of single-crystal CdS microbelts using a modified thermal evaporation method and their photoluminescence. J. Phys. Chem. B 2005, 109, 9294-9298.

17

Jang, J. S.; Joshi, U. A.; Lee, J. S. Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J. Phys. Chem. C 2007, 111, 13280-13287.

18

Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274-278.

19

Weinhardt, L.; Gleim, T.; Fuchs, O.; Heske, C.; Umbach, E.; Bar, M.; Muffler, H. J.; Fischer, C. H.; Lux-Steiner, M. C.; Zubavichus, Y.; Niesen, T. P.; Karg, F. CdS and Cd(OH)2 formation during Cd treatments of Cu(In, Ga)(S, Se)2 thin-film solar cell absorbers. Appl. Phys. Lett. 2003, 82, 571.

20

Mandal, S.; Rautaray, D.; Sanyal, A.; Sastry, M. Synthesis and assembly of CdS nanoparticles in Keggin ion colloidal particles as templates. J. Phys. Chem. B 2004, 108, 7126-7131.

21

Duan, X. F.; Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 2000, 12, 298-302.

DOI
22

Ye, C. H.; Meng, G. W.; Wang, Y. H.; Jiang, Z.; Zhang, L. D. On the growth of CdS nanowires by the evaporation of CdS nanopowders. J. Phys. Chem. B 2002, 106, 10338-10341.

23

Zhang, M. F.; Drechsler, M.; Muller, A. H. E. Template-controlled synthesis of wire-like cadmium sulfide nanoparticle assemblies within core-shell cylindrical polymer brushes. Chem. Mater. 2004, 16, 537-543.

24

Xu, D.; Liu, Z. P.; Liang, J. B.; Qian, Y. T. Solvothermal synthesis of CdS nanowires in a mixed solvent of ethylenediamine and dodecanethiol. J. Phys. Chem. B 2005, 109, 14344-14349.

25

Carbone, L.; Nobile, C.; De Giorg, M.; Sala, F. D.; Morello, G.; Pompa, P.; Hytch, M.; Snoeck, E.; Fiore, A.; Franchini, I. R.; Nadasan, M.; Silvestre, A. F.; Chiodo, L.; Kudera, S.; Cingolani, R.; Krahne, R.; Manna, L. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 2007, 7, 2942-2950.

26

Lin, H. Y.; Chen, Y. F.; Wu, J. G.; Wang, D. I.; Chen, C. C. Carrier transfer induced photoluminescence change in metal-semiconductor core-shell nanostructures. Appl. Phys. Lett. 2006, 88, 161911.

27

Saunders, A. E.; Popov, I.; Banin, U. Synthesis of hybrid CdS-Au colloidal nanostructures. J. Phys. Chem. B 2006, 110, 25421-25429.

28

Yong, K. T.; Sahoo, Y.; Swihart, M. T.; Prasad, P. N. Shape control of CdS nanocrystals in one-pot synthesis. J. Phys. Chem. C 2007, 111, 2447-2458.

29

Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 1994, 801-802.

30

Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett. 2005, 5, 379-382.

31

Buffat, P.; Borel, J. P. Size effect on melting temperature of gold particles. Phys. Rev. A 1976, 13, 2287-2298.

32

Sakai, H. Surface-induced melting of small particles. Surf. Sci. 1996, 351, 285-291.

File
nr-1-4-314_ESM.pdf (897 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 09 July 2008
Revised: 03 August 2008
Accepted: 25 August 2008
Published: 01 October 2008
Issue date: August 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Acknowledgements

This work is supported by NSF-DMR 0547036, NSF-CBET 0652042, and UB Integrated Nanostructured Systems Instrument Facilities.

Rights and permissions

This article is published with open access at Springerlink.com

Return