AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (586.6 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Vertical Nanowire Array-Based Light Emitting Diodes

Elaine Lai1,2Woong Kim1,2Peidong Yang1,2( )
Department of Chemistry, University of CaliforniaBerkeley CA 94720 USA
Molecular Foundry, Material Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
Show Author Information

Graphical Abstract

Abstract

Electroluminescence from a nanowire array-based light emitting diode is reported. The junction consists of a p-type GaN thin film grown by metal–organic chemical vapor deposition (MOCVD) and a vertical n-type ZnO nanowire array grown epitaxially from the thin film through a simple low temperature solution method. The fabricated devices exhibit diode like current–voltage behavior. Electroluminescence is visible to the human eye at a forward bias of 10 V and spectroscopy reveals that emission is dominated by acceptor to band transitions in the p-GaN thin film. It is suggested that the vertical nanowire architecture of the device leads to waveguided emission from the thin film through the nanowire array.

References

1

Strite, S.; Morkoç, H. GaN, AlN, and InN: A review. J. Vac. Sci. Technol. B 1992, 10, 1237–1266.

2

Wang, Z. L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. : Condens. Mat. 2004, 16, R829–R858.

3

Sirbuly, D. J.; Law, M.; Yan, J.; Yang, P. Semiconductor nanowires for subwavelength photonics integration. J. Phys. Chem. B 2005, 109, 15190–15213.

4

Duan, X.; Huang, Y.; Cui, Y.; Wang, J.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66–69.

5

Khan, A.; Balakrishnan, K.; Katona, T. Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photon. 2008, 2, 77–84.

6

Pearton, S. J.; Ren, F.; Zhang, A. P.; Lee, K. P. Fabrication and performance of GaN electronic devices. Mater. Sci. Eng. R 2000, 30, 55–212.

7

Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y.; Saykally, R. J.; Yang, P. Low-temperature nanowire arrays. Angew. Chem. Int. Ed. 2003, 42, 3031–3034.

8

Ohgaki, T.; Sugimura, S.; Ryoken, H.; Ohashi, N.; Sakaguchi, I.; Sekiguchi, T.; Haneda, H. Interfacial structure of GaN and InN thin films grown on ZnO substrates. Key Eng. Mat. 2006, 301, 79–82.

9

Johnson, J.; Yan, H.; Schaller, R. D.; Haber, L. H.; Saykally, R. J.; Yang, P. Single nanowire lasers. J. Phys. Chem. B 2001, 105, 11387–11390.

10

Law, M.; Sirbuly, D. J.; Johnson, J. C.; Goldberger, J.; Saykally, R. J.; Yang, P. Nanoribbon waveguides for subwavelength photonics integration. Science 2004, 305, 1269–1272.

11

Park, W. I.; Yi, G. C. Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv. Mater. 2004, 16, 87–90.

12

Kim, D. C.; Han, W. S.; Kong, B. H.; Cho, H. K.; Hong, C. H. Fabrication of the hybrid ZnO LED structure grown on p-type GaN by metal organic chemical vapor deposition. Physica B 2007, 401–402, 386–390.

13

Jeong, M. C.; Oh, B. Y.; Ham, M. H.; Lee, S. W.; Myoung, H. M. ZnO-nanowire-inserted GaN/ZnO heterojunction light-emitting diodes. Small 2007, 3, 568–572.

14

Sun, H.; Zhang, Q. F.; Wu, J. L. Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure. Nanotechnology 2006, 17, 2271–2274.

15

Könenkamp, R.; Word, R. C.; Godinez, M. Ultraviolet electroluminescence from ZnO/polymer heterojunction light-emitting diodes. Nano Lett. 2005, 5, 2005–2008.

16

Chang, C. Y.; Tsao, F. C.; Pan, C. J.; Chi, G. C.; Wang, H. T.; Chen, J. J.; Ren, F.; Norton, D. P.; Pearton, S. J.; Chen, K. H.; Chen, L. C. Electroluminescence from ZnO nanowire/polymer composite p–n junction. Appl. Phys. Lett. 2006, 88, 173503.

17

Nadarajah, A.; Word, R. C.; Meiss, J.; Könenkamp, R. Flexible inorganic nanowire light-emitting diode. Nano Lett. 2008, 8, 534–537.

18

Yang, W. Q.; Huo, H. B.; Dai, L.; Ma, R. M.; Liu, S. F.; Ran, G. Z.; Shen, B.; Lin, C. L.; Qin, G. G. Electrical transport and electroluminescence properties of n-ZnO single nanowires. Nanotechnology 2006, 17, 4868–4872.

19

Lee, S. K.; Kim, T. H.; Lee, S. Y.; Choi, K. C.; Yang, P. High-brightness gallium nitride nanowire UV-blue light emitting diodes. Philos. Mag. 2007, 87, 2105–2115.

20

Motayed, A.; Davydov, A. V.; He, M.; Mohammad, S. N.; Melngailis, J. 365 nm operation of n-nanowire/p-gallium nitride homojunction light emitting diodes. Appl. Phys. Lett. 2007, 90, 183120.

21

Zimmler, M. A.; Bao, J.; Shalish, I.; Yi, W.; Yoon, J.; Narayanamurti, V.; Capasso, F. Electroluminescence from single nanowires by tunnel injection: An experimental study. Nanotechnology 2007, 18, 1–5.

22

Viswanath, A. K.; Shin, E. J.; Lee, J. I.; Yu, S.; Kim, D.; Kim, B.; Choi, Y.; Hong, C. H. Magnesium acceptor levels in GaN studies by photoluminescence. J. Appl. Phys. 1998, 83, 2272–2275.

23

Johnson, J. C.; Yan, H.; Yang, P.; Saykally, R. J. Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B 2003, 107, 8816–8828.

24

An, S. J.; Chae, J. H.; Yi, G. C.; Park, G. H. Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays. Appl. Phys. Lett. 2008, 92, 121108.

25

Chiu, C. H.; Lee, C. E.; Chao, C. L.; Cheng, B. S.; Huang, H. W.; Kuo, H. C.; Lu, T. C.; Wang, S. C.; Kuo, W. L. Hsiao, C. S.; Chen, S. Y. Enhancement of light output intensity by integrating ZnO nanorod arrays on GaN-based LLO vertical LEDs. Electrochem. Solid-State Lett. 2008, 11, H84–H87.

Nano Research
Pages 123-128
Cite this article:
Lai E, Kim W, Yang P. Vertical Nanowire Array-Based Light Emitting Diodes. Nano Research, 2008, 1(2): 123-128. https://doi.org/10.1007/s12274-008-8017-4

795

Views

72

Downloads

171

Crossref

N/A

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 05 May 2008
Revised: 22 June 2008
Accepted: 22 June 2008
Published: 31 July 2008
© Tsinghua Press and Springer-Verlag 2008
Return