Journal Home > Volume 1 , Issue 2

Electroluminescence from a nanowire array-based light emitting diode is reported. The junction consists of a p-type GaN thin film grown by metal–organic chemical vapor deposition (MOCVD) and a vertical n-type ZnO nanowire array grown epitaxially from the thin film through a simple low temperature solution method. The fabricated devices exhibit diode like current–voltage behavior. Electroluminescence is visible to the human eye at a forward bias of 10 V and spectroscopy reveals that emission is dominated by acceptor to band transitions in the p-GaN thin film. It is suggested that the vertical nanowire architecture of the device leads to waveguided emission from the thin film through the nanowire array.


menu
Abstract
Full text
Outline
About this article

Vertical Nanowire Array-Based Light Emitting Diodes

Show Author's information Elaine Lai1,2Woong Kim1,2Peidong Yang1,2( )
Department of Chemistry, University of CaliforniaBerkeley CA 94720 USA
Molecular Foundry, Material Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

Abstract

Electroluminescence from a nanowire array-based light emitting diode is reported. The junction consists of a p-type GaN thin film grown by metal–organic chemical vapor deposition (MOCVD) and a vertical n-type ZnO nanowire array grown epitaxially from the thin film through a simple low temperature solution method. The fabricated devices exhibit diode like current–voltage behavior. Electroluminescence is visible to the human eye at a forward bias of 10 V and spectroscopy reveals that emission is dominated by acceptor to band transitions in the p-GaN thin film. It is suggested that the vertical nanowire architecture of the device leads to waveguided emission from the thin film through the nanowire array.

Keywords: LED, electroluminescence, ZnO nanowire, waveguiding

References(25)

1

Strite, S.; Morkoç, H. GaN, AlN, and InN: A review. J. Vac. Sci. Technol. B 1992, 10, 1237–1266.

2

Wang, Z. L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. : Condens. Mat. 2004, 16, R829–R858.

3

Sirbuly, D. J.; Law, M.; Yan, J.; Yang, P. Semiconductor nanowires for subwavelength photonics integration. J. Phys. Chem. B 2005, 109, 15190–15213.

4

Duan, X.; Huang, Y.; Cui, Y.; Wang, J.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66–69.

5

Khan, A.; Balakrishnan, K.; Katona, T. Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photon. 2008, 2, 77–84.

6

Pearton, S. J.; Ren, F.; Zhang, A. P.; Lee, K. P. Fabrication and performance of GaN electronic devices. Mater. Sci. Eng. R 2000, 30, 55–212.

7

Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y.; Saykally, R. J.; Yang, P. Low-temperature nanowire arrays. Angew. Chem. Int. Ed. 2003, 42, 3031–3034.

8

Ohgaki, T.; Sugimura, S.; Ryoken, H.; Ohashi, N.; Sakaguchi, I.; Sekiguchi, T.; Haneda, H. Interfacial structure of GaN and InN thin films grown on ZnO substrates. Key Eng. Mat. 2006, 301, 79–82.

9

Johnson, J.; Yan, H.; Schaller, R. D.; Haber, L. H.; Saykally, R. J.; Yang, P. Single nanowire lasers. J. Phys. Chem. B 2001, 105, 11387–11390.

10

Law, M.; Sirbuly, D. J.; Johnson, J. C.; Goldberger, J.; Saykally, R. J.; Yang, P. Nanoribbon waveguides for subwavelength photonics integration. Science 2004, 305, 1269–1272.

11

Park, W. I.; Yi, G. C. Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv. Mater. 2004, 16, 87–90.

12

Kim, D. C.; Han, W. S.; Kong, B. H.; Cho, H. K.; Hong, C. H. Fabrication of the hybrid ZnO LED structure grown on p-type GaN by metal organic chemical vapor deposition. Physica B 2007, 401–402, 386–390.

13

Jeong, M. C.; Oh, B. Y.; Ham, M. H.; Lee, S. W.; Myoung, H. M. ZnO-nanowire-inserted GaN/ZnO heterojunction light-emitting diodes. Small 2007, 3, 568–572.

14

Sun, H.; Zhang, Q. F.; Wu, J. L. Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure. Nanotechnology 2006, 17, 2271–2274.

15

Könenkamp, R.; Word, R. C.; Godinez, M. Ultraviolet electroluminescence from ZnO/polymer heterojunction light-emitting diodes. Nano Lett. 2005, 5, 2005–2008.

16

Chang, C. Y.; Tsao, F. C.; Pan, C. J.; Chi, G. C.; Wang, H. T.; Chen, J. J.; Ren, F.; Norton, D. P.; Pearton, S. J.; Chen, K. H.; Chen, L. C. Electroluminescence from ZnO nanowire/polymer composite p–n junction. Appl. Phys. Lett. 2006, 88, 173503.

17

Nadarajah, A.; Word, R. C.; Meiss, J.; Könenkamp, R. Flexible inorganic nanowire light-emitting diode. Nano Lett. 2008, 8, 534–537.

18

Yang, W. Q.; Huo, H. B.; Dai, L.; Ma, R. M.; Liu, S. F.; Ran, G. Z.; Shen, B.; Lin, C. L.; Qin, G. G. Electrical transport and electroluminescence properties of n-ZnO single nanowires. Nanotechnology 2006, 17, 4868–4872.

19

Lee, S. K.; Kim, T. H.; Lee, S. Y.; Choi, K. C.; Yang, P. High-brightness gallium nitride nanowire UV-blue light emitting diodes. Philos. Mag. 2007, 87, 2105–2115.

20

Motayed, A.; Davydov, A. V.; He, M.; Mohammad, S. N.; Melngailis, J. 365 nm operation of n-nanowire/p-gallium nitride homojunction light emitting diodes. Appl. Phys. Lett. 2007, 90, 183120.

21

Zimmler, M. A.; Bao, J.; Shalish, I.; Yi, W.; Yoon, J.; Narayanamurti, V.; Capasso, F. Electroluminescence from single nanowires by tunnel injection: An experimental study. Nanotechnology 2007, 18, 1–5.

22

Viswanath, A. K.; Shin, E. J.; Lee, J. I.; Yu, S.; Kim, D.; Kim, B.; Choi, Y.; Hong, C. H. Magnesium acceptor levels in GaN studies by photoluminescence. J. Appl. Phys. 1998, 83, 2272–2275.

23

Johnson, J. C.; Yan, H.; Yang, P.; Saykally, R. J. Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B 2003, 107, 8816–8828.

24

An, S. J.; Chae, J. H.; Yi, G. C.; Park, G. H. Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays. Appl. Phys. Lett. 2008, 92, 121108.

25

Chiu, C. H.; Lee, C. E.; Chao, C. L.; Cheng, B. S.; Huang, H. W.; Kuo, H. C.; Lu, T. C.; Wang, S. C.; Kuo, W. L. Hsiao, C. S.; Chen, S. Y. Enhancement of light output intensity by integrating ZnO nanorod arrays on GaN-based LLO vertical LEDs. Electrochem. Solid-State Lett. 2008, 11, H84–H87.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 05 May 2008
Revised: 22 June 2008
Accepted: 22 June 2008
Published: 31 July 2008
Issue date: February 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Acknowledgements

Acknowledgements

This work was supported in part by the U.S. Department of Energy and DARPA-UPR. Work at the Lawrence Berkeley National Laboratory was supported by the Office of Science, Basic Energy Sciences, and Division of Materials Science of the U.S. Department of Energy. EL thanks Sandia National Laboratories for financial support through an educational fellowship.

Rights and permissions

Return