Journal Home > Volume 1 , Issue 1

InAs nanowires have been actively explored as the channel material for high performance transistors owing to their high electron mobility and ease of ohmic metal contact formation. The catalytic growth of nonepitaxial InAs nanowires, however, has often relied on the use of Au colloids which is non-CMOS compatible. Here, we demonstrate the successful synthesis of crystalline InAs nanowires with high yield and tunable diameters by using Ni nanoparticles as the catalyst material on amorphous SiO2 substrates. The nanowires show superb electrical properties with field-effect electron mobility ~2700 cm2/Vs and ION/IOFF > 103. The uniformity and purity of the grown InAs nanowires are further demonstrated by large-scale assembly of parallel arrays of nanowires on substrates via the contact printing process that enables high performance, "printable" transistors, capable of delivering 5–10 mA ON currents (~400 nanowires).


menu
Abstract
Full text
Outline
About this article

Synthesis, Contact Printing, and Device Characterization of Ni-Catalyzed, Crystalline InAs Nanowires

Show Author's information Alexandra C. Ford1,2Johnny C. Ho1,2Zhiyong Fan1,2Onur Ergen1Virginia Altoe3Shaul Aloni3Haleh Razavi1Ali Javey1,2( )
Department of Electrical Engineering and Computer SciencesUniversity of California at BerkeleyBerkeleyCA 94720USA
Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyCA 94720USA
Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA 94720USA

Abstract

InAs nanowires have been actively explored as the channel material for high performance transistors owing to their high electron mobility and ease of ohmic metal contact formation. The catalytic growth of nonepitaxial InAs nanowires, however, has often relied on the use of Au colloids which is non-CMOS compatible. Here, we demonstrate the successful synthesis of crystalline InAs nanowires with high yield and tunable diameters by using Ni nanoparticles as the catalyst material on amorphous SiO2 substrates. The nanowires show superb electrical properties with field-effect electron mobility ~2700 cm2/Vs and ION/IOFF > 103. The uniformity and purity of the grown InAs nanowires are further demonstrated by large-scale assembly of parallel arrays of nanowires on substrates via the contact printing process that enables high performance, "printable" transistors, capable of delivering 5–10 mA ON currents (~400 nanowires).

Keywords: Crystalline InAs nanowire, Ni catalyst, high-performance transistor

References(22)

1

Lieber, C. M.; Wang, Z. L. Functional nanowires. MRS Bull. 2007, 32, 99–104.

2

Bryllert, T.; Wernersson, L. E.; Froberg, L. E.; Samuelson, L. Vertical high-mobility wrap-gated InAs nanowire transistor. IEEE Electr. Device L. 2006, 27, 323–325.

3

Friedman, R. S.; McAlpine, M. C.; Ricketts, D. S.; Ham, D.; Lieber, C. M. Nanotechnology: High-speed integrated nanowire circuits. Nature 2005, 434, 1085.

4

Tseng, Y. C.; Xuan, P. Q.; Javey, A.; Malloy, R.; Wang, Q.; Bokor, J.; Dai, H. Monolithic integration of carbon nanotube devices with silicon MOS technology. Nano Lett. 2004, 4, 123–127.

5

Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.

6

Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 2006, 441, 489–493.

7

McAlpine, M. C.; Ahmad, H.; Wang, D.; Heath, J. R. Highly-ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nature Mat. 2007, 6, 379–384.

8

Fan, Z.; Ho, J. C.; Jacobson, Z. A.; Yerushalmi, R.; Alley, L.; Razavi, H.; Javey, A. Wafer-scale assembly of highly-ordered semiconductor nanowire arrays by contact printing. Nano Lett. 2008, 8, 20–25.

9

Yerushalmi, R.; Jacobson, Z. A.; Ho, J. C.; Fan, Z.; Javey, A. Large-scale, highly-ordered assembly of nanowire parallel arrays by differential roll printing. Appl. Phys. Lett. 2007, 91, 203104-1-3.

10

Javey, A.; Nam, S.; Friendman, R. S.; Yan, H.; Lieber, C. M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 2007, 7, 773–777.

11

Yu, G.; Cao, A.; Lieber, C. M. Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nature Nanotech. 2007, 2, 372–377.

12

Lind, E.; Persson, A. I.; Samuelson, L.; Wernersson, L. E. Improved subthreshold slope in an InAs nanowire heterostructure field-effect transistor. Nano Lett. 2006, 6, 1842–1846.

13

Jiang, X.; Xiong, Q.; Nam, S.; Qian, F.; Li, Y.; Lieber, C. M. InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 2007, 7, 3214–3218.

14

Dayeh, S. A.; Yu, E. T.; Wang, D. InAs nanowire growth on SiO2 substrates: nucleation, evolution, and role of Au nanoparticles. J. Phys. Chem. C 2007, 111, 13331–13336.

15

Dayeh, S. A.; Aplin, D. P. R.; Zhou, X.; Yu, P. K. L.; Yu, E. T.; Wang, D. High electron mobility InAs nanowire field-effect transistors. Small 2007, 3, 326–332.

16

Bleszynski, A. C.; Zwanenburg, F. A.; Westervelt, R. M.; Roest, A. L.; Bakkers, E. P. A. M.; Kouwenhoven, L. P. Scanned probe imaging of quantum dots inside InAs nanowires. Nano Lett. 2007, 7, 2559–2562.

17

Park, H. D.; Gaillot, A. C.; Prokes, S. M.; Cammarata, R. C. Observation of size-dependent liquidus depression in the growth of InAs nanowires. J. Crystal Growth 2006, 296, 159–164.

18

Park, H. D.; Prokes, S. M.; Twigg, M. E.; Cammarata, R. C.; Gaillot, A. -C. Si-assisted growth of InAs nanowires. Appl. Phys. Lett. 2006, 89, 223125.

19

Mandl, B.; Stangl, J.; Mårtensson, T.; Mikkelsen, A.; Eriksson, J.; Karlsson, L. S.; Bauer, G.; Samuelson, L.; Seifert, W. Au-free epitaxial growth of InAs nanowires. Nano Lett. 2006, 6, 1817–1821.

20

Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Yenilmez, E.; Gordon, R. G.; Lundstrom, M.; Dai, H. Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett. 2004, 4, 1319–1322.

21

Javey, A.; Kim, H.; Brink, M.; Wang, Q.; Ural, A.; Guo, J.; McIntyre, P.; McEuen, P.; Lundstrom, M.; Dai, H. High-κ dielectrics for advanced carbon-nanotube transistors and logic gates. Nature Mat. 2002, 1, 241–246.

22

Wang, D.; Wang, Q.; Javey, A.; Tu, R.; Dai, H.; Kim, H.; Krishnamohan, T.; McIntyre, P.; Saraswat, K. Germanium nanowire field-effect transistor with SiO2 and high-κ HfO2 gate dielectrics. Appl. Phys. Lett. 2003, 83, 2432–2434.

Publication history
Copyright
Rights and permissions

Publication history

Received: 05 May 2008
Revised: 04 June 2008
Accepted: 04 June 2008
Published: 12 July 2008
Issue date: January 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Rights and permissions

Return