Journal Home > Volume 12 , Issue 6

This study examined the impacts of detailed envelope airleakage distribution and internal partition walls airleakage on the ventilation performance of a detached low-energy house. We used a multizone modelling approach based on CO2, humidity and formaldehyde to calculate indoor air quality (IAQ) performance indicators. Impacts of uneven envelope airleakage distribution on selected IAQ performance indicators are generally significant whatever ventilation system is present. Impacts of internal partition wall airleakage are considerably greater with exhaust-only ventilation but can be high on some IAQ performance indicators with balanced ventilation. We also conclude that it is relevant to use detailed data on envelope airleakage distribution and internal partition wall airleakage to precisely assess ventilation performance on IAQ. This work highlights the need of regulations or labels requiring performance-based approaches for ventilation at the design stage of buildings, calculating the relevant IAQ performance indicators. In such multizone modelling approaches, detailed airleakage distributions, on envelope and on internal partition walls, should be taken into account.


menu
Abstract
Full text
Outline
About this article

Modelling the impact of multizone airleakage on ventilation performance and indoor air quality in low-energy homes

Show Author's information Gaëlle Guyot1,2( )Hugo Geoffroy2Michel Ondarts2Léna Migne2Mallory Bobee2Evelyne Gonze2Monika Woloszyn2
Cerema, Direction Centre-Est, 46, rue St Théobald, F-38080, L'Isle d'Abeau, France
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LOCIE, 73000 Chambéry, France

Abstract

This study examined the impacts of detailed envelope airleakage distribution and internal partition walls airleakage on the ventilation performance of a detached low-energy house. We used a multizone modelling approach based on CO2, humidity and formaldehyde to calculate indoor air quality (IAQ) performance indicators. Impacts of uneven envelope airleakage distribution on selected IAQ performance indicators are generally significant whatever ventilation system is present. Impacts of internal partition wall airleakage are considerably greater with exhaust-only ventilation but can be high on some IAQ performance indicators with balanced ventilation. We also conclude that it is relevant to use detailed data on envelope airleakage distribution and internal partition wall airleakage to precisely assess ventilation performance on IAQ. This work highlights the need of regulations or labels requiring performance-based approaches for ventilation at the design stage of buildings, calculating the relevant IAQ performance indicators. In such multizone modelling approaches, detailed airleakage distributions, on envelope and on internal partition walls, should be taken into account.

Keywords: performance, indoor air quality, ventilation, infiltration, formaldehyde, house, airleakage, indicator

References(78)

MO Abadie, P Blondeau (2011). PANDORA database: A compilation of indoor air pollutant emissions. HVAC & R Research, 17: 602-613.
A Afshari, U Matson, LE Ekberg (2005). Characterization of indoor sources of fine and ultrafine particles: A study conducted in a full-scale chamber. Indoor Air, 15: 141-150.
ASHRAE (2001). International Weather for Energy Calculations (IWEC Weather Files) Users Manual and CD-ROM. Atlanta, GA, USA: American Society of Heating Refrigerating and Air-Conditioning Engineers.
JW Axley (1991). Adsorption modelling for building contaminant dispersal analysis. Indoor Air, 1: 147-171.
G Bekö, T Lund, F Nors, J Toftum, G Clausen (2010). Ventilation rates in the bedrooms of 500 Danish children. Building and Environment, 45: 2289-2295.
A-M Bernard (2009). Performance de La Ventilation et Du Bâti - Phase 3 - Performance Énergétique et QAI Des Systèmes Hygroréglables. Projet PREBAT ADEME.
A Blondel, H Plaisance (2011). Screening of formaldehyde indoor sources and quantification of their emission using a passive sampler. Building and Environment, 46: 1284-1291.
CG Bornehag, J Sundell, L Hagerhed-Engman, T Sigsgaard (2005). Association between ventilation rates in 390 Swedish homes and allergic symptoms in children. Indoor Air, 15: 275-280.
W Borsboom, W De Gids, J Logue, M Sherman, P Wargocki (2016). TN 68: Residential ventilation and health. AIVC Technical Note 68. Available at http://www.aivc.org/sites/default/files/TN68_Heath%26Ventilation.pdf.
A Bossaer, J Demeester, P Wouters, B Vandermarke, W Vangroenweghe (1998). Airtightness performances in new Belgian dwellings. In: Proceedings of the 19th AIVC Conference: Ventilation Technologies in Urban Areas, Oslo, Norway.
X Boulanger, L Mouradian, C Pele, PY Pamart, A-M Bernard (2012). Lessons learned on ventilation systems from the IAQ calculations on tight energy performant buildings. In: Proceedings of the AIVC-Tightvent Conference, Copenhagen, Denmark.
S Brasche, W Bischof (2005). Daily time spent indoors in German homes—Baseline data for the assessment of indoor exposure of German occupants. International Journal of Hygiene and Environmental Health, 208: 247-253.
Carrié FR, Jobert R, Fournier M, Berthault S, Van Elslande H (2006). Perméabilité à l’air de l’enveloppe Des Bâtiments. Généralités et Sensibilisation. Cerema - CETE de Lyon.
CCFAT (2015). VMC Simple Flux Hygroréglable - Règles de Calculs Pour l’instruction d’une Demande d’avis Techniques - GS14.5 - Equipements / Ventilation et Systèmes Par Vecteur Air. http://www.ccfat.fr/groupe-specialise/14-5/.
CEN (2006a). EN FD/TR 14788. Ventilation Des Bâtiments - Conception et Dimensionnement Des Systèmes de Ventilation Résidentiels.
DOI
CEN (2006b). EN FD/TR 14788. Ventilation Des Bâtiments - Conception et Dimensionnement Des Systèmes de Ventilation Résidentiels.
DOI
CEN (2007). BS EN 15242:2007 - Ventilation for Buildings. Calculation Methods for the Determination of Air Flow Rates in Buildings Including Infiltration.
CEN (2009). EN 15665 - Ventilation for Buildings Determining Performance Criteria for Residential Ventilation Systems. AFNOR.
YL Chen, J Wen (2012). The selection of the most appropriate airflow model for designing indoor air sensor systems. Building and Environment, 50: 34-43.
CNRS & LaSIE (2014). PANDORA Database.
L Cony Renaud Salis, M Abadie, P Wargocki, C Rode (2017). Towards the definition of indicators for assessment of indoor air quality and energy performance in low-energy residential buildings. Energy and Buildings, 152: 492-502.
WS Dols, BJ Polidoro (2015). CONTAM User Guide And Program Documentation Version 3.2. NIST TN 1887, National Institute of Standards and Technology.
DOI
DRASS Rhône-Alpes (2007). MESURE DES ALDEHYDES DANS L’AIR INTERIEUR Des Écoles Maternelles et Des Crèches de La Région Rhône-Alpes. Available at http://www.air-rhonealpes.fr/sites/ra/files/publications_import/files/2007_air_interieur_ecoles_region_rapport.pdf.
LL Du, S Batterman, C Godwin, J-Y Chin, E Parker, M Breen, W Brakefield, T Robins, T Lewis (2012). Air change rates and interzonal flows in residences, and the need for multi-zone models for exposure and health analyses. International Journal of Environmental Research and Public Health, 9: 4639-4661.
T Duforestel, P Dalicieux (1994). A model of hygroscopic buffer to simulate the indoor air humidity behaviour in transient conditions. In: Proceedings of European Conference on Energy Performance and Indoor Climate in Buildings, Lyon, France, pp. 791-797.
F Durier, R Carrié, M Sherman (2018). What Is Smart Ventilation? AIVC, Ventilation Information Paper No. 38. Available at http://aivc.org/sites/default/files/VIP38.pdf.
DOI
SJ Emmerich (2001). Validation of multizone IAQ modeling of residential-scale buildings: A review/discussion.” ASHRAE Transactions, 107(2): 619-628.
SJ Emmerich, AK Persily, SJ Nabinger (2002). Modeling moisture in residential buildings with a multi-zone IAQ program. In: Proceedings of Indoor Air 2002, Monterey, CA, USA, pp. 32-37.
DOI
SJ Emmerich, C Howard-Reed, SJ Nabinger (2004). Validation of multizone IAQ model predictions for tracer gas in a townhouse. Building Services Engineering Research and Technology, 25: 305-316.
SJ Emmerich, WS Dols (2016). Model validation study of carbon monoxide transport due to portable electric generator operation in an attached garage. Journal of Building Performance Simulation, 9: 397-410.
H Erhorn, H Erhorn-Kluttig, FR Carrié (2008). Airtightness requirements for high performance buildings. In: Proceedings of the 29th AIVC Conference, Kyoto, Japan.
DOI
European Commission (2003). Communiqué de Presse - Indoor Air Pollution: New EU Research Reveals Higher Risks than Previously Thought. Available at http://europa.eu/rapid/press-release_IP-03-1278_en.htm.
G Guyot, D Limoges, C François-Rémi (2012). French policy for shelter-in-place: Airtightness measurements on indoor rooms. In: Proceedings of the 33rd AIVC Conference, Optimising Ventilative Cooling and Airtightness for [Nearly] Zero-Energy Buildings, IAQ and Comfort, Copenhagen, Denmark.
DOI
G Guyot, J Ferlay, E Gonze, M Woloszyn, P Planet, T Bello (2016). Multizone air leakage measurements and interactions with ventilation flows in low-energy homes. Building and Environment, 107: 52-63.
G Guyot, A Melois, AM Bernard, CS Coeudevez, S Déoux, S Berlin, E Parent, A Huet, S Berthault, R Jobert, D Labaume (2018). Ventilation performance and indoor air pollutants diagnosis in 21 French low energy homes. International Journal of Ventilation, 17: 187-195.
G Guyot, IS Walker, MH Sherman (2019). Performance based approaches in standards and regulations for smart ventilation in residential buildings: A summary review. International Journal of Ventilation, 18: 96-112.
LG Harriman, GW Brundrett, R Kittler (2001). Humidity Control Design Guide for Commercial and Institutional Buildings. Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers.
DOI
C He (2004). Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmospheric Environment, 38: 3405-3415.
AT Hodgson, AF Rudd, D Beal, S Chandra (2000). Volatile organic compound concentrations and emission rates in new manufactured and site-built houses. Indoor Air, 10: 178-192.
C Howard-Reed, B Polidoro, WS Dols (2003). Development of IAQ model input databases: Volatile organic compound source emission rates. In: Proceedings of Air and Waste Management Association Conference.
M Jantunen, E De Oliveira Fernandes, P Carrer, S Kephalopoulos (2011). Promoting actions for healthy indoor air (IAIAQ). Luxembourg: European Commission Directorate General for Health and Consumers.
DOI
JO (1983). Arrêté Du 24 Mars 1982 Relatif à l’aération Des Logements.
DOI
JO (2011). Méthode de Calcul Th-BCE 2012. Annexe à l’arrêté Portant Approbation de La Méthode de Calcul Th-BCE 2012, 1377 p. Available at http://www.bulletin-officiel.developpement-durable.gouv.fr/fiches/BO201114/met_20110014_0100_0007%20annexe.pdf.
DOI
P Karava, T Stathopoulos, AK Athienitis (2003). Investigation of the performance of trickle ventilators. Building and Environment, 38: 981-993.
S Kirchner, J-F Arenes, C Cochet, M Derbez , C Duboudin, et al. (2007). État de La Qualité de l’air Dans Les Logements Français. Environnement, Risques & Santé, 6 (4): 259-269.
S Kirchner, M Derbez, C Duboudin, P Elias, A Gregoire, J-P Lucas, N Pasquier, O Ramalho, N Weiss (2008). Indoor air quality in French dwellings. In: Proceedings of Indoor Air 2008.
DOI
NE Klepeis, WC Nelson, WR Ott, JP Robinson, AM Tsang, PAUL Switzer, JV Behar, SC Hern, WH Engelmann (2001). The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. Journal of Exposure Science & Environmental Epidemiology, 11: 231-252.
J Koffi (2009). Analyse Multicritère Des Stratégies de Ventilation En Maisons Individuelles. PhD Thesis, Université de la Rochelle, France.
DOI
K Koistinen, D Kotzias, S Kephalopoulos, C Schlitt, P Carrer, et al. (2008). The INDEX project: Executive summary of a European Union project on indoor air pollutants. Allergy, 63: 810-819.
A Lansari, JJ Streicher, AH Huber, GH Crescenti, RB Zweidinger, JW Duncan, CP Weisel, RM Burton (1996). Dispersion of automotive alternative fuel vapors within a residence and its attached garage. Indoor Air, 6: 118-126.
J Laverge, A Janssens (2013). Optimization of design flow rates and component sizing for residential ventilation. Building and Environment, 65: 81-89.
J Laverge, X Pattyn, A Janssens (2013). Performance assessment of residential mechanical exhaust ventilation systems dimensioned in accordance with Belgian, British, Dutch, French and ASHRAE standards. Building and Environment, 59: 177-186.
W Liang, M Lv, X Yang (2016). The combined effects of temperature and humidity on initial emittable formaldehyde concentration of a medium-density fiberboard. Building and Environment, 98: 80-88.
JM Logue, TE McKone, MH Sherman, BC Singer (2011). Hazard assessment of chemical air contaminants measured in residences. Indoor Air, 21: 92-109.
JM Logue, PN Price, MH Sherman, BC Singer (2012). A method to estimate the chronic health impact of air pollutants in US residences. Environmental Health Perspectives, 120: 216-222.
DM Lorenzetti, WS Dols, AK Persily, MD Sohn (2013). A stiff, variable time step transport solver for CONTAM. Building and Environment, 67: 260-264.
D Missia, T Kopadinis, J Bartzis, G Ventura Silva, E De Oliveira Fernandes, P Carrer, P Wolkoff, M Stranger, E Goelen (2012). Literature review on product composition, emitted compounds and emissions rates and health end points from consumer products EPHECT Project, WP4 Report. Available at https://sites.vito.be/sites/ephect/Working%20documents/EPHECT%20deliverables%20and%20documents/1.%20Existing%20knowledge%20and%20data%20inventory%20(WP4)/WP4%20Literature%20review%20final.pdf.
L Ng, WS Dols, D Poppendieck, SJ Emmerich (2016). Evaluating IAQ and energy impacts of ventilation in a net-zero energy house using a coupled model. In: Proceedings of IAQ 2016, Defining Indoor Air Quality: Policy, Standards and Best Practices, Alexandria, VA, USA.
DOI
DA Olson, JM Burke (2006). Distributions of PM2.5 Source strengths for cooking from the research triangle park particulate matter panel study. Environmental Science & Technology, 40: 163-169.
S Pallin, P Johansson, C-E Hagentoft (2011). Stochastic modeling of moisture supply in dwellings based on moisture production and moisture buffering capacity. In: Proceedings of 12th International IBPSA Building Simulation Conference, Sydney, Australia.
JS Park, K Ikeda (2006). Variations of formaldehyde and VOC levels during 3 years in new and older homes. Indoor Air, 16: 129-135.
A Persily (1997). Evaluating building IAQ and ventilation with indoor carbon dioxide. ASHRAE Transactions, 103(2): 193-204.
P Plathner, M Woloszyn (2002). Interzonal air and moisture transport in a test house: Experiment and modelling. Building and Environment, 37: 189-199.
J Ribéron, O Ramalho, M Derbez, B Berthineau, G Wyart, S Kirchner, C Mandin (2016). Air stuffiness index: From schools to dwellings. Pollution Atmosphérique, no. 228. Available at http://lodel.irevues.inist.fr/pollution-atmospherique/index.php?id=5466.(in French)
A Roldan, F Allard, G Achard (1987). Influence of infiltrations and inter-room air flows on thermal loads in multizone buildings. In: Proceedings of the 3rd International Congress on Building Energy Management (ICBEM 87), pp178-185.
RG Sextro, JM Daisey, HE Feustel, DJ Dickerhoff, C Jump (1999). Comparison of modeled and measured tracer gas concentrations in a multizone building. In: Proceedings of Indoor Air 1999, Edinburgh, UK.
MH Sherman, AT Hodgson (2002). Formaldehyde as a basis for residential ventilation rates. Lawrence Berkeley National Laboratory. Available at http://escholarship.org/uc/item/2mm48667#page-2.
HJ Steeman, A Janssens, J Carmeliet, M de Paepe (2009). Modelling indoor air and hygrothermal wall interaction in building simulation: Comparison between CFD and a well-mixed zonal model. Building and Environment, 44: 572-583.
A Tilmans, D Van Orshoven, P D’Herdt, C Mees, P Wouters, FR Carrié, G Guyot, ME Spiekman (2009). Treatment of envelope airtightness in the EPB-Regulations: Some results of a survey in the IEE-ASIEPI Project. In: Proceedings of the Buildair & 30th AIVC Conference, Trends in High Performance Buildings and the Role of Ventilation, Berlin, Germany.
N Van den Bossche, A Janssens, N Heijmans, P Wouters (2007). Performance evaluation of humidity controlled ventilation strategies in residential buildings. In: Proceedings of Thermal Performance of the Exterior Envelopes of Whole Buildings X, Clearwater Beach, FL, USA. Available at https://web.ornl.gov/sci/buildings/conf-archive/2007%20B10%20papers/195_Bossche.pdf
GN Walton, SJ Emmerich (1994). CONTAM93: A multizone airflow and contaminant dispersal model with a graphic user interface. Air Infiltration Review, 16 (1): 6-8.
FM White (1988). Heat and Mass Transfer. Reading, MA, USA: Addison-Wesley.
WHO (2010). WHO Guidelines for Indoor Air Quality: Selected Pollutants. Bonn, Germany: World Health Organization Regional Office for Europe. Available at http://www.euro.who.int/_data/assets/pdf_file/0009/128169/e94535.pdf.
WHO (2014). Burden of Disease from Household Air Pollution for 2012. World Health Organization. Available at http://www.who.int/phe/health_topics/outdoorair/databases/FINAL_HAP_AAP_BoD_24March2014.pdf.
M Woloszyn, T Kalamees, M Olivier Abadie, M Steeman, A Sasic Kalagasidis (2009a). The effect of combining a relative- humidity-sensitive ventilation system with the moisture-buffering capacity of materials on indoor climate and energy efficiency of buildings. Building and Environment, 44: 515-524.
M Woloszyn, C Rode, AS Kalagasidis, A Janssens, M De Paepe (2009b). From EMPD to CFD—Overview of different approaches for heat air and moisture modeling in IEA Annex 41. ASHRAE Transactions, 115(2): 96-110.
A Zeghnoun, F Dor, A Grégoire (2010). Description Du Budget Espace-Temps et Estimation de l’exposition de La Population Française Dans Son Logement. Institut de Veille Sanitaire- Observatoire de La Qualité de l’air Intérieur. Available at http://www.oqai.fr/userdata/documents/298_InVS_OQAI_BET_Logements_2010_Internet.pdf.
Y Zhao, H Yoshino, H Okuyama (1998). Evaluation of the COMIS model by comparing simulation and measurement of airflow and pollutant concentration. Indoor Air, 8: 123-130.
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 February 2019
Revised: 08 April 2019
Accepted: 06 May 2019
Published: 26 June 2019
Issue date: December 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

The contribution of Cerema is funded by the French Ministries in charge of sustainable development, transport and urban planning. The sole responsibility for the content of this publication lies with the authors.

Return