Journal Home > Volume 2 , Issue 4
Background

Doxorubicin is a widely used cytotoxic chemotherapy agent for treating different malignancies. However, its use is associated with dose‐dependent cardiotoxicity, causing irreversible myocardial damage and significantly reducing the patient's quality of life and survival. In this study, an animal model of doxorubicin‐induced cardiomyopathy was used to investigate the pathogenesis of doxorubicin‐induced myocardial injury. This study also investigated a possible treatment strategy for alleviating myocardial injury through resveratrol therapy in vitro.

Methods

Adult male C57BL/6J mice were randomly divided into a control group and a doxorubicin group. Body weight, echocardiography, surface electrocardiogram, and myocardial histomorphology were measured. The mechanisms of doxorubicin cardiotoxicity in H9c2 cell lines were explored by comparing three groups (phosphate‐buffered saline, doxorubicin, and doxorubicin with resveratrol).

Results

Compared to the control group, the doxorubicin group showed a lower body weight and higher systolic arterial pressure, associated with reduced left ventricular ejection fraction and left ventricular fractional shortening, prolonged PR interval, and QT interval. These abnormalities were associated with vacuolation and increased disorder in the mitochondria of cardiomyocytes, increased protein expression levels of α‐smooth muscle actin and caspase 3, and reduced protein expression levels of Mitofusin2 (MFN2) and Sirtuin1 (SIRT1). Compared to the doxorubicin group, doxorubicin + resveratrol treatment reduced caspase 3 and manganese superoxide dismutase, and increased MFN2 and SIRT1 expression levels.

Conclusion

Doxorubicin toxicity leads to abnormal mitochondrial morphology and dysfunction in cardiomyocytes and induces apoptosis by interfering with mitochondrial fusion. Resveratrol ameliorates doxorubicin‐induced cardiotoxicity by activating SIRT1/MFN2 to improve mitochondria function.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Resveratrol activation of SIRT1/MFN2 can improve mitochondria function, alleviating doxorubicin‐induced myocardial injury

Show Author's information Qingling Zhang1,Yunpeng Zhang1,Bingxin Xie1Daiqi Liu1Yueying Wang1Zandong Zhou1Yue Zhang1Emma King2Gary Tse1,2,3Tong Liu1 ( )
Department of Cardiology, Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
Epidemiology Research Unit, Cardiovascular Analytics Group, China‐ UK Collaboration, Hong Kong, China
Kent and Medway Medical School, Canterbury, Kent, UK Correspondence

Qingling Zhang and Yunpeng Zhang contributed equally to this study and shared the first authorship.

Abstract

Background

Doxorubicin is a widely used cytotoxic chemotherapy agent for treating different malignancies. However, its use is associated with dose‐dependent cardiotoxicity, causing irreversible myocardial damage and significantly reducing the patient's quality of life and survival. In this study, an animal model of doxorubicin‐induced cardiomyopathy was used to investigate the pathogenesis of doxorubicin‐induced myocardial injury. This study also investigated a possible treatment strategy for alleviating myocardial injury through resveratrol therapy in vitro.

Methods

Adult male C57BL/6J mice were randomly divided into a control group and a doxorubicin group. Body weight, echocardiography, surface electrocardiogram, and myocardial histomorphology were measured. The mechanisms of doxorubicin cardiotoxicity in H9c2 cell lines were explored by comparing three groups (phosphate‐buffered saline, doxorubicin, and doxorubicin with resveratrol).

Results

Compared to the control group, the doxorubicin group showed a lower body weight and higher systolic arterial pressure, associated with reduced left ventricular ejection fraction and left ventricular fractional shortening, prolonged PR interval, and QT interval. These abnormalities were associated with vacuolation and increased disorder in the mitochondria of cardiomyocytes, increased protein expression levels of α‐smooth muscle actin and caspase 3, and reduced protein expression levels of Mitofusin2 (MFN2) and Sirtuin1 (SIRT1). Compared to the doxorubicin group, doxorubicin + resveratrol treatment reduced caspase 3 and manganese superoxide dismutase, and increased MFN2 and SIRT1 expression levels.

Conclusion

Doxorubicin toxicity leads to abnormal mitochondrial morphology and dysfunction in cardiomyocytes and induces apoptosis by interfering with mitochondrial fusion. Resveratrol ameliorates doxorubicin‐induced cardiotoxicity by activating SIRT1/MFN2 to improve mitochondria function.

Keywords: resveratrol, cardio‐oncology, doxorubicin‐induced cardiomyopathy, mitochondria function, SIRT1 agonists

References(69)

1

Dimarco A, Gaetani M, Orezzi P, Scarpinato BM, Silvestrini R, Soldati M, et al. ‘Daunomycin’, a new antibiotic of the rhodomycin group. Nature. 1964;201:706–7. https://doi.org/10.1038/201706a0

2

Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–801. https://doi.org/10.1093/eurheartj/ehw211

3

Armenian SH, Robison LL. Childhood cancer survivorship: an update on evolving paradigms for understanding pathogenesis and screening for therapy‐related late effects. Curr Opin Pediatr. 2013;25(1):16–22. https://doi.org/10.1097/MOP.0b013e32835b0b6a

4

Kremer LCM, van Dalen EC, Offringa M, Ottenkamp J, Voûte PA. Anthracycline‐induced clinical heart failure in a cohort of 607 children: long‐term follow‐up study. J Clin Oncol. 2001;19(1):191–6. https://doi.org/10.1200/JCO.2001.19.1.191

5

Armenian SH, Lacchetti C, Barac A, Carver J, Constine LS, Denduluri N, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2017;35(8):893–911. https://doi.org/10.1200/JCO.2016.70.5400

6

Abdullah CS, Aishwarya R, Morshed M, Remex NS, Miriyala S, Panchatcharam M, et al. Monitoring mitochondrial morphology and respiration in doxorubicin‐induced cardiomyopathy. Methods Mol Biol. 2022;2497:207–20. https://doi.org/10.1007/978-1-0716-2309-1_13

7

Yarmohammadi F, Rezaee R, Haye AW, Karimi G. Endoplasmic reticulum stress in doxorubicin‐induced cardiotoxicity may be therapeutically targeted by natural and chemical compounds: a review. Pharmacol Res. 2021;164:105383. https://doi.org/10.1016/j.phrs.2020.105383

8

Wang Y, Lu X, Wang X, Qiu Q, Zhu P, Ma L, et al. atg7‐based autophagy activation reverses doxorubicin‐induced cardiotoxicity. Circ Res. 2021;129(8):e166–82. https://doi.org/10.1161/CIRCRESAHA.121.319104

9

Pan JA, Zhang H, Lin H, Gao L, Zhang HL, Zhang JF, et al. Irisin ameliorates doxorubicin‐induced cardiac perivascular fibrosis through inhibiting endothelial‐to‐mesenchymal transition by regulating ROS accumulation and autophagy disorder in endothelial cells. Redox Biol. 2021;46:102120. https://doi.org/10.1016/j.redox.2021.102120

10

Mizuta Y, Tokuda K, Guo J, Zhang S, Narahara S, Kawano T, et al. Sodium thiosulfate prevents doxorubicin‐induced DNA damage and apoptosis in cardiomyocytes in mice. Life Sci. 2020;257:118074. https://doi.org/10.1016/j.lfs.2020.118074

11

Hu C, Zhang X, Song P, Yuan YP, Kong CY, Wu HM, et al. Meteorin‐like protein attenuates doxorubicin‐induced cardiotoxicity via activating cAMP/PKA/SIRT1 pathway. Redox Biol. 2020;37:101747. https://doi.org/10.1016/j.redox.2020.101747

12

Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin‐induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol. 2012;52(6):1213–25. https://doi.org/10.1016/j.yjmcc.2012.03.006

13

Ferreira PG, Muñoz‐Aguirre M, Reverter F, Sá Godinho CP, Sousa A, Amadoz A, et al. The effects of death and post‐mortem cold ischemia on human tissue transcriptomes. Nat Commun. 2018;9(1):490. https://doi.org/10.1038/s41467-017-02772-x

14

Tse G, Yan BP, Chan YW, Tian XY, Huang Y. Reactive oxygen species, endoplasmic reticulum stress and mitochondrial dysfunction: the link with cardiac arrhythmogenesis. Front Physiol. 2016;7:313. https://doi.org/10.3389/fphys.2016.00313

15

Yang M, Linn BS, Zhang Y, Ren J. Mitophagy and mitochondrial integrity in cardiac ischemia‐reperfusion injury. Biochim Biophys Acta Mol Basis Dis. 2019;1865(9):2293–302. https://doi.org/10.1016/j.bbadis.2019.05.007

16

Zhou L, Liu Y, Wang Z, Liu D, Xie B, Zhang Y, et al. Activation of NADPH oxidase mediates mitochondrial oxidative stress and atrial remodeling in diabetic rabbits. Life Sci. 2021;272:119240. https://doi.org/10.1016/j.lfs.2021.119240

17

Gong M, Yuan M, Meng L, Zhang Z, Tse G, Zhao Y, et al. Wenxin Keli regulates mitochondrial oxidative stress and homeostasis and improves atrial remodeling in diabetic rats. Oxid Med Cell Longevity. 2020;2020:1–17. https://doi.org/10.1155/2020/2468031

18

Shao Q, Meng L, Lee S, Tse G, Gong M, Zhang Z, et al. Empagliflozin, a sodium glucose co‐transporter‐2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high‐fat diet/streptozotocin‐induced diabetic rats. Cardiovasc Diabetol. 2019;18(1):165. https://doi.org/10.1186/s12933-019-0964-4

19

Yang Y, Zhao J, Qiu J, Li J, Liang X, Zhang Z, et al. Xanthine oxidase inhibitor allopurinol prevents oxidative stress‐mediated atrial remodeling in alloxan‐induced diabetes mellitus rabbits. J Am Heart Assoc. 2018;7(10):e008807. https://doi.org/10.1161/JAHA.118.008807

20

Zhang X, Zhang Z, Zhao Y, Jiang N, Qiu J, Yang Y, et al. Alogliptin, a dipeptidyl peptidase‐4 inhibitor, alleviates atrial remodeling and improves mitochondrial function and biogenesis in diabetic rabbits. J Am Heart Assoc. 2017;6(5):e005945. https://doi.org/10.1161/JAHA.117.005945

21

Zhang X, Zhang Z, Yang Y, Suo Y, Liu R, Qiu J, et al. Alogliptin prevents diastolic dysfunction and preserves left ventricular mitochondrial function in diabetic rabbits. Cardiovasc Diabetol. 2018;17(1):160. https://doi.org/10.1186/s12933-018-0803-z

22

He J, Gong M, Wang Z, Liu D, Xie B, Luo C, et al. Cardiac abnormalities after induction of endoplasmic reticulum stress are associated with mitochondrial dysfunction and connexin43 expression. Clin Exp Pharmacol Physiol. 2021;48(10):1371–81. https://doi.org/10.1111/1440-1681.13541

23

Li Y, Dong W, Shan X, Hong H, Liu Y, Liu Y, et al. The anti‐tumor effects of Mfn2 in breast cancer are dependent on promoter DNA methylation, the P21(Ras) motif and PKA phosphorylation site. Oncol Lett. 2018;15(5):8011–8. https://doi.org/10.3892/ol.2018.8314

24

Chen KH, Guo X, Ma D, Guo Y, Li Q, Yang D, et al. Dysregulation of HSG triggers vascular proliferative disorders. Nature Cell Biol. 2004;6(9):872–83. https://doi.org/10.1038/ncb1161

25

Hu Y, Chen H, Zhang L, Lin X, Li X, Zhuang H, et al. The AMPK‐MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses. Autophagy. 2021;17(5):1142–56. https://doi.org/10.1080/15548627.2020.1749490

26

de Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 2008;456(7222):605–10. https://doi.org/10.1038/nature07534

27

Yuan M, Gong M, Zhang Z, Meng L, Tse G, Zhao Y, et al. Hyperglycemia induces endoplasmic reticulum stress in atrial cardiomyocytes, and mitofusin‐2 downregulation prevents mitochondrial dysfunction and subsequent cell death. Oxid Med Cell Longevity. 2020;2020:6569728. https://doi.org/10.1155/2020/6569728

28

Bach D, Pich S, Soriano FX, Vega N, Baumgartner B, Oriola J, et al. Mitofusin‐2 determines mitochondrial network architecture and mitochondrial metabolism. J Biol Chem. 2003;278(19):17190–7. https://doi.org/10.1074/jbc.M212754200

29

Chen H, McCaffery JM, Chan DC. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell. 2007;130(3):548–62. https://doi.org/10.1016/j.cell.2007.06.026

30

Karbowski M, Lee YJ, Gaume B, Jeong SY, Frank S, Nechushtan A, et al. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol. 2002;159(6):931–8. https://doi.org/10.1083/jcb.200209124

31

Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res. 2007;100(10):1512–21. https://doi.org/10.1161/01.RES.0000267723.65696.4a

32

Sundaresan NR, Pillai VB, Gupta MP. Emerging roles of SIRT1 deacetylase in regulating cardiomyocyte survival and hypertrophy. J Mol Cell Cardiol. 2011;51(4):614–8. https://doi.org/10.1016/j.yjmcc.2011.01.008

33

Winnik S, Auwerx J, Sinclair DA, Matter CM. Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J. 2015;36(48):3404–12. https://doi.org/10.1093/eurheartj/ehv290

34

Maharajan N, Cho GW. Camphorquinone promotes the antisenescence effect via activating AMPK/SIRT1 in stem cells and D‐galactose‐induced aging mice. Antioxidants (Basel). 2021;10(12):1916. https://doi.org/10.3390/antiox10121916

35

Han X, Ding C, Sang X, Peng M, Yang Q, Ning Y, et al. Targeting Sirtuin1 to treat aging‐related tissue fibrosis: from prevention to therapy. Pharmacol Ther. 2022;229:107983. https://doi.org/10.1016/j.pharmthera.2021.107983

36

Chen Y, An N, Zhou X, Mei L, Sui Y, Chen G, et al. Fibroblast growth factor 20 attenuates pathological cardiac hypertrophy by activating the SIRT1 signaling pathway. Cell Death Dis. 2022;13(3):276. https://doi.org/10.1038/s41419-022-04724-w

37

Zhang Z, Wang X, Yang L, Yang L, Ma H. Liraglutide ameliorates myocardial damage in experimental diabetic rats by inhibiting pyroptosis via Sirt1/AMPK signaling. Iran J Basic Med Sci. 2021;24(10):1358–65. https://doi.org/10.22038/IJBMS.2021.56771.12677

38

Ren B, Feng J, Yang N, Guo Y, Chen C, Qin Q. Ginsenoside Rg3 attenuates angiotensin II‐induced myocardial hypertrophy through repressing NLRP3 inflammasome and oxidative stress via modulating SIRT1/NF‐κB pathway. Int Immunopharmacol. 2021;98:107841. https://doi.org/10.1016/j.intimp.2021.107841

39

Liu P, Li J, Liu M, Zhang M, Xue Y, Zhang Y, et al. Hesperetin modulates the Sirt1/Nrf2 signaling pathway in counteracting myocardial ischemia through suppression of oxidative stress, inflammation, and apoptosis. Biomed Pharmacother. 2021;139:111552. https://doi.org/10.1016/j.biopha.2021.111552

40

Liao W, Rao Z, Wu L, Chen Y, Li C. Cariporide attenuates doxorubicin‐induced cardiotoxicity in rats by inhibiting oxidative stress, inflammation and apoptosis partly through regulation of Akt/GSK‐3β and Sirt1 signaling pathway. Front Pharmacol. 2022;13:850053. https://doi.org/10.3389/fphar.2022.850053

41

Luo XY, Zhong Z, Chong AG, Zhang WW, Wu XD. Function and mechanism of trimetazidine in myocardial infarction‐induced myocardial energy metabolism disorder through the SIRT1‐AMPK pathway. Front Physiol. 2021;12:645041. https://doi.org/10.3389/fphys.2021.645041

42

Zhang J, He Z, Fedorova J, Logan C, Bates L, Davitt K, et al. Alterations in mitochondrial dynamics with age‐related Sirtuin1/Sirtuin3 deficiency impair cardiomyocyte contractility. Aging cell. 2021;20(7):e13419. https://doi.org/10.1111/acel.13419

43

Lu TM, Tsai JY, Chen YC, Huang CY, Hsu HL, Weng CF, et al. Downregulation of Sirt1 as aging change in advanced heart failure. J Biomed Sci. 2014;21(1):57. https://doi.org/10.1186/1423-0127-21-57

44

Wang S, Wang Y, Zhang Z, Liu Q, Gu J. Cardioprotective effects of fibroblast growth factor 21 against doxorubicin‐induced toxicity via the SIRT1/LKB1/AMPK pathway. Cell Death Dis. 2017;8(8):e3018. https://doi.org/10.1038/cddis.2017.410

45

Liu D, Ma Z, Xu L, Zhang X, Qiao S, Yuan J. PGC1α activation by pterostilbene ameliorates acute doxorubicin cardiotoxicity by reducing oxidative stress via enhancing AMPK and SIRT1 cascades. Aging. 2019;11(22):10061–73. https://doi.org/10.18632/aging.102418

46

Dolinsky VW. The role of sirtuins in mitochondrial function and doxorubicin‐induced cardiac dysfunction. Biol Chem. 2017;398(9):955–74. https://doi.org/10.1515/hsz-2016-0316

47

Eid RA, Bin‐Meferij MM, El‐Kott AF, Eleawa SM, Zaki MSA, Al‐Shraim M, et al. Exendin‐4 protects against myocardial ischemia‐reperfusion injury by upregulation of SIRT1 and SIRT3 and activation of AMPK. J Cardiovasc Transl Res. 2021;14(4):619–35. https://doi.org/10.1007/s12265-020-09984-5

48

Modesto PN, Polegato BF, Dos Santos PP, Grassi LDV, Molina LCC, Bazan SGZ, et al. Green tea (Camellia sinensis) extract increased topoisomerase IIβ, improved antioxidant defense, and attenuated cardiac remodeling in an acute doxorubicin toxicity model. Oxid Med Cell Longevity. 2021;2021:8898919. https://doi.org/10.1155/2021/8898919

49

Vejpongsa P, Yeh ETH. Topoisomerase 2β: a promising molecular target for primary prevention of anthracycline‐induced cardiotoxicity. Clin Pharm Ther. 2013;95(1):45–52. https://doi.org/10.1038/clpt.2013.201

50

Shao CS, Zhou XH, Miao YH, Wang P, Zhang QQ, Huang Q. In situ observation of mitochondrial biogenesis as the early event of apoptosis. iScience. 2021;24(9):103038. https://doi.org/10.1016/j.isci.2021.103038

51

Porter AG, Jänicke RU. Emerging roles of caspase‐3 in apoptosis. Cell Death Differ. 1999;6(2):99–104. https://doi.org/10.1038/sj.cdd.4400476

52

Dong M, Yu T, Zhang Z, Zhang J, Wang R, Tse G, et al. ICIs‐related cardiotoxicity in different types of cancer. J Cardiovasc Dev Dis. 2022;9(7):203. https://doi.org/10.3390/jcdd9070203

53

Kinoshita T, Yuzawa H, Natori K, Wada R, Yao S, Yano K, et al. Early electrocardiographic indices for predicting chronic doxorubicin‐induced cardiotoxicity. J Cardiol. 2021;77(4):388–94. https://doi.org/10.1016/j.jjcc.2020.10.007

54

Chen Z, Lu K, Zhou L, Liu D, Li X, Han X, et al. Electrocardiographic characteristics of diffuse large B‐cell lymphoma patients treated with anthracycline‐based chemotherapy. J Electrocardiol. 2020;60:195–9. https://doi.org/10.1016/j.jelectrocard.2020.04.024

55

Zheng Y, Huang S, Xie B, Zhang N, Liu Z, Tse G, et al. Cardiovascular toxicity of proteasome inhibitors in multiple myeloma therapy. Curr Probl Cardiol. 2023;48(3):101536. https://doi.org/10.1016/j.cpcardiol.2022.101536

56

Chan JSK, Lee YHA, Liu K, Hui JMH, Dee EC, Ng K, et al. Long‐term cardiovascular burden in prostate cancer patients receiving androgen deprivation therapy. Eur J Clin Invest. 2022;53(4):e13932. https://doi.org/10.1111/eci.13932

57

Dong M, Yu T, Tse G, Lin Z, Lin C, Zhang N, et al. PD‐1/PD‐L1 blockade accelerates the progression of atherosclerosis in cancer patients. Curr Probl Cardiol. 2023;48(3):101527. https://doi.org/10.1016/j.cpcardiol.2022.101527

58

Song W, Zheng Y, Dong M, Zhong L, Bazoukis G, Perone F, et al. Electrocardiographic features of immune checkpoint inhibitor‐associated myocarditis. Curr Probl Cardiol. 2023;48(2):101478. https://doi.org/10.1016/j.cpcardiol.2022.101478

59

Chan JSK, Tang P, Ng K, Dee EC, Lee TTL, Chou OHI, et al. Cardiovascular risks of chemo‐immunotherapy for lung cancer: a population‐based cohort study. Lung Cancer. 2022;174:67–70. https://doi.org/10.1016/j.lungcan.2022.10.010

60

Chan JSK, Lakhani I, Lee TTL, Chou OHI, Lee YHA, Cheung YM, et al. Cardiovascular outcomes and hospitalizations in asian patients receiving immune checkpoint inhibitors: a population‐based study. Curr Probl Cardiol. 2023;48(1):101380. https://doi.org/10.1016/j.cpcardiol.2022.101380

61

Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003;160(2):189–200. https://doi.org/10.1083/jcb.200211046

62

Ding M, Shi R, Cheng S, Li M, De D, Liu C, et al. Mfn2‐mediated mitochondrial fusion alleviates doxorubicin‐induced cardiotoxicity with enhancing its anticancer activity through metabolic switch. Redox Biol. 2022;52:102311. https://doi.org/10.1016/j.redox.2022.102311

63

Davies KJ, Doroshow JH. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem. 1986;261(7):3060–7. https://doi.org/10.1016/S0021-9258(17)35746-0

64

Doroshow JH, Davies KJ. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J Biol Chem. 1986;261(7):3068–74. https://doi.org/10.1016/S0021-9258(17)35747-2

65

Shen T, Zheng M, Cao C, Chen C, Tang J, Zhang W, et al. Mitofusin‐2 is a major determinant of oxidative stress‐mediated heart muscle cell apoptosis. J Biol Chem. 2007;282(32):23354–61. https://doi.org/10.1074/jbc.M702657200

66

Cui L, Guo J, Zhang Q, Yin J, Li J, Zhou W, et al. Erythropoietin activates SIRT1 to protect human cardiomyocytes against doxorubicin‐induced mitochondrial dysfunction and toxicity. Toxicol Lett. 2017;275:28–38. https://doi.org/10.1016/j.toxlet.2017.04.018

67

Sooyeon L, Go KL, Kim JS. Deacetylation of mitofusin‐2 by sirtuin‐1: a critical event in cell survival after ischemia. Mol Cell Oncol. 2016;3(2):e1087452. https://doi.org/10.1080/23723556.2015.1087452

68

Yan H, Qiu C, Sun W, Gu M, Xiao F, Zou J, et al. Yap regulates gastric cancer survival and migration via SIRT1/Mfn2/mitophagy. Oncol Rep. 2018;39(4):1671–81. https://doi.org/10.3892/or.2018.6252

69

Cheung KG, Cole LK, Xiang B, Chen K, Ma X, Myal Y, et al. Sirtuin‐3 (SIRT3) protein attenuates doxorubicin‐induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. J Biol Chem. 2015;290(17):10981–93. https://doi.org/10.1074/jbc.M114.607960

File
cai-2-4-253_ESM.docx (128.9 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 25 November 2022
Accepted: 08 March 2023
Published: 30 March 2023
Issue date: August 2023

Copyright

© 2023 The Authors. Tsinghua University Press.

Acknowledgements

ACKNOWLEDGMENTS

None.

Rights and permissions

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

Return