Journal Home > Volume 2 , Issue 2

Glioblastoma (GBM) is the most common primary central nervous system tumor, whose prognosis remains poor under the sequential standard of care, such as neurosurgery followed by concurrent temozolomide radiochemotherapy and adjuvant temozolomide chemotherapy in the presence or absence of tumor treating fields. Accordingly, the advent of molecular targeted therapy and immunotherapy has opened a new era of tumor management. A diverse range of targeted drugs have been tested in patients with GBM in phase Ⅲ clinical trials. However, these drugs are ineffective for all patients, as evidenced by the fact that only a minority of patients in these trials showed prolonged survival. Furthermore, there are several published phase Ⅲ clinical trials that involve immune checkpoint inhibitors, peptide vaccines, dendritic cell vaccines, and virotherapy. Accordingly, this review comprehensively overviews existing studies of targeted drugs and immunotherapy for glioma and discusses the challenge and perspective of targeted drugs and immunotherapy for glioma to clarify future directions.


menu
Abstract
Full text
Outline
About this article

Progress in phase Ⅲ clinical trials of molecular targeted therapy and immunotherapy for glioblastoma

Show Author's information Yuekun Wang1Shenglan Li2Yichen Peng2Wenbin Ma1Yu Wang1( )Wenbin Li2 ( )
Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Department of Neuro‐oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

Yuekun Wang, Shenglan Li, and Yu Wang contributed equally to this work and shared the first authorship.

Abstract

Glioblastoma (GBM) is the most common primary central nervous system tumor, whose prognosis remains poor under the sequential standard of care, such as neurosurgery followed by concurrent temozolomide radiochemotherapy and adjuvant temozolomide chemotherapy in the presence or absence of tumor treating fields. Accordingly, the advent of molecular targeted therapy and immunotherapy has opened a new era of tumor management. A diverse range of targeted drugs have been tested in patients with GBM in phase Ⅲ clinical trials. However, these drugs are ineffective for all patients, as evidenced by the fact that only a minority of patients in these trials showed prolonged survival. Furthermore, there are several published phase Ⅲ clinical trials that involve immune checkpoint inhibitors, peptide vaccines, dendritic cell vaccines, and virotherapy. Accordingly, this review comprehensively overviews existing studies of targeted drugs and immunotherapy for glioma and discusses the challenge and perspective of targeted drugs and immunotherapy for glioma to clarify future directions.

Keywords: immunotherapy, glioblastoma, phase Ⅲ clinical trial, target therapy

References(117)

1

Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz‐Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011‐2015. Neuro‐Oncology. 2018;20(suppl_4):iv1–iv86. https://doi.org/10.1093/neuonc/noy131

2

Preusser M, Lim M, Hafler DA, Reardon DA, Sampson JH. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat Rev Neurol. 2015;11(9):504–14. https://doi.org/10.1038/nrneurol.2015.139

3

Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase Ⅲ study: 5‐year analysis of the EORTC‐NCIC trial. Lancet Oncol. 2009;10(5):459–66. https://doi.org/10.1016/S1470-2045(09)70025-7

4

Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz‐Sloan JS, Barthel FP, et al. Glioblastoma in adults: a Society for Neuro‐Oncology (SNO) and European Society of Neuro‐Oncology (EANO) consensus review on current management and future directions. Neuro‐Oncology. 2020;22(8):1073–113. https://doi.org/10.1093/neuonc/noaa106

5

Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015‐2019. Neuro‐Oncology. 2022;24(suppl_4):v1–v95. https://doi.org/10.1093/neuonc/noac202

6

Morgan LL. The epidemiology of glioma in adults: a “state of the science” review. Neuro‐Oncology. 2015;17(4):623–4. https://doi.org/10.1093/neuonc/nou358

7

Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109. https://doi.org/10.1007/s00401-007-0243-4

8

Berger TR, Wen PY, Lang‐Orsini M, Chukwueke UN. World Health Organization 2021 classification of central nervous system tumors and implications for therapy for adult‐type gliomas: a review. JAMA Oncol. 2022;8(10):1493–501. https://doi.org/10.1001/jamaoncol.2022.2844

9

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella‐Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20. https://doi.org/10.1007/s00401-016-1545-1

10

Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella‐Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro‐Oncology. 2021;23(8):1231–51. https://doi.org/10.1093/neuonc/noab106

11

Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, et al. Maintenance therapy with tumor‐treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA. 2015;314(23):2535–43. https://doi.org/10.1001/jama.2015.16669

12

Ronellenfitsch MW, Zeiner PS, Mittelbronn M, Urban H, Pietsch T, Reuter D, et al. Akt and mTORC1 signaling as predictive biomarkers for the EGFR antibody nimotuzumab in glioblastoma. Acta Neuropathol Commun. 2018;6(1):81. https://doi.org/10.1186/s40478-018-0583-4

13

Marin BM, Porath KA, Jain S, Kim M, Conage‐Pough JE, Oh JH, et al. Heterogeneous delivery across the blood‐brain barrier limits the efficacy of an EGFR‐targeting antibody drug conjugate in glioblastoma. Neuro‐Oncology. 2021;23(12):2042–53. https://doi.org/10.1093/neuonc/noab133

14

Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII‐expressing glioblastoma (ACT IV): a randomised, double‐blind, international phase 3 trial. Lancet Oncol. 2017;18(10):1373–85. https://doi.org/10.1016/S1470-2045(17)30517-X

15

Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):699–708. https://doi.org/10.1056/NEJMoa1308573

16

Sandmann T, Bourgon R, Garcia J, Li C, Cloughesy T, Chinot OL, et al. Patients with proneural glioblastoma may derive overall survival benefit from the addition of bevacizumab to first‐line radiotherapy and temozolomide: retrospective analysis of the AVAglio trial. J Clin Oncol. 2015;33(25):2735–44. https://doi.org/10.1200/JCO.2015.61.5005

17

Weller M, Nabors LB, Gorlia T, Leske H, Rushing E, Bady P, et al. Cilengitide in newly diagnosed glioblastoma: biomarker expression and outcome. Oncotarget. 2016;7(12):15018–32. https://doi.org/10.18632/oncotarget.7588

18

Stupp R, Hegi ME, Gorlia T, Erridge SC, Perry J, Hong YK, et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071‐22072 study): a multicentre, randomised, open‐label, phase 3 trial. Lancet Oncol. 2014;15(10):1100–8. https://doi.org/10.1016/S1470-2045(14)70379-1

19

Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 2020;6(7):1003–10. https://doi.org/10.1001/jamaoncol.2020.1024

20

Omuro A, Brandes AA, Carpentier AF, Idbaih A, Reardon DA, Cloughesy T, et al. Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: an international randomized phase Ⅲ trial. Neuro‐Oncology. 2023;25(1):123–34. https://doi.org/10.1093/neuonc/noac099

21

Lim M, Weller M, Idbaih A, Steinbach J, Finocchiaro G, Raval RR, et al. Phase Ⅲ trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro‐Oncology. 2022;24(11):1935–49. https://doi.org/10.1093/neuonc/noac116

22

Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII‐expressing glioblastoma (ACT IV): a randomised, double‐blind, international phase 3 trial. Lancet Oncol. 2017;18(10):1373–85. https://doi.org/10.1016/S1470-2045(17)30517-X

23

Narita Y, Arakawa Y, Yamasaki F, Nishikawa R, Aoki T, Kanamori M, et al. A randomized, double‐blind, phase Ⅲ trial of personalized peptide vaccination for recurrent glioblastoma. Neuro‐Oncology. 2019;21(3):348–59. https://doi.org/10.1093/neuonc/noy200

24

Liau LM, Ashkan K, Brem S, Campian JL, Trusheim JE, Iwamoto FM, et al. Association of autologous tumor lysate‐loaded dendritic cell vaccination with extension of survival among patients with newly diagnosed and recurrent glioblastoma: a phase 3 prospective externally controlled cohort trial. JAMA Oncol. 2023;9(1):112–21. https://doi.org/10.1001/jamaoncol.2022.5370

25

Rainov NG. A phase Ⅲ clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther. 2000;11(17):2389–401. https://doi.org/10.1089/104303400750038499

26

Westphal M, Ylä‐Herttuala S, Martin J, Warnke P, Menei P, Eckland D, et al. Adenovirus‐mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high‐grade glioma (ASPECT): a randomised, open‐label, phase 3 trial. Lancet Oncol. 2013;14(9):823–33. https://doi.org/10.1016/S1470-2045(13)70274-2

27

Cloughesy TF, Brenner A, de Groot JF, Butowski NA, Zach L, Campian JL, et al. A randomized controlled phase Ⅲ study of VB‐111 combined with bevacizumab vs bevacizumab monotherapy in patients with recurrent glioblastoma (GLOBE). Neuro‐Oncology. 2020;22(5):705–17. https://doi.org/10.1093/neuonc/noz232

28

Szabo E, Schneider H, Seystahl K, Rushing EJ, Herting F, Weidner KM, et al. Autocrine VEGFR1 and VEGFR2 signaling promotes survival in human glioblastoma models in vitro and in vivo. Neuro‐Oncology. 2016;18(9):1242–52. https://doi.org/10.1093/neuonc/now043

29

Estrada CC, Maldonado A, Mallipattu SK. Therapeutic inhibition of VEGF signaling and associated nephrotoxicities. J Am Soc Nephrol. 2019;30(2):187–200. https://doi.org/10.1681/ASN.2018080853

30

Sorensen AG, Emblem KE, Polaskova P, Jennings D, Kim H, Ancukiewicz M, et al. Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion. Cancer Res. 2012;72(2):402–7. https://doi.org/10.1158/0008-5472.CAN-11-2464

31

Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti‐VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun. 2005;333(2):328–35. https://doi.org/10.1016/j.bbrc.2005.05.132

32

Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, et al. Bevacizumab plus radiotherapy‐temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):709–22. https://doi.org/10.1056/NEJMoa1308345

33

Gilbert MR, Pugh SL, Aldape K, Sorensen AG, Mikkelsen T, Penas‐Prado M, et al. NRG oncology RTOG 0625: a randomized phase Ⅱ trial of bevacizumab with either irinotecan or dose‐dense temozolomide in recurrent glioblastoma. J Neurooncol. 2017;131(1):193–9. https://doi.org/10.1007/s11060-016-2288-5

34

Erdem‐Eraslan L, van den Bent MJ, Hoogstrate Y, Naz‐Khan H, Stubbs A, van der Spek P, et al. Identification of patients with recurrent glioblastoma who may benefit from combined bevacizumab and CCNU therapy: a report from the BELOB trial. Cancer Res. 2016;76(3):525–34. https://doi.org/10.1158/0008-5472.CAN-15-0776

35

Franz DN, Belousova E, Sparagana S, Bebin EM, Frost M, Kuperman R, et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST‐1): a multicentre, randomised, placebo‐controlled phase 3 trial. Lancet. 2013;381(9861):125–32. https://doi.org/10.1016/S0140-6736(12)61134-9

36

Ma DJ, Galanis E, Anderson SK, Schiff D, Kaufmann TJ, Peller PJ, et al. A phase Ⅱ trial of everolimus, temozolomide, and radiotherapy in patients with newly diagnosed glioblastoma: NCCTG N057K. Neuro‐Oncology. 2015;17(9):1261–9. https://doi.org/10.1093/neuonc/nou328

37

Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. https://doi.org/10.1016/j.cell.2013.09.034

38

Kelly WJ, Shah NJ, Subramaniam DS. Management of brain metastases in epidermal growth factor receptor mutant non‐small‐cell lung cancer. Front Oncol. 2018;8:208. https://doi.org/10.3389/fonc.2018.00208

39

De Witt Hamer PC. Small molecule kinase inhibitors in glioblastoma: a systematic review of clinical studies. Neuro‐Oncology. 2010;12(3):304–16. https://doi.org/10.1093/neuonc/nop068

40

Neyns B, Sadones J, Joosens E, Bouttens F, Verbeke L, Baurain JF, et al. Stratified phase Ⅱ trial of cetuximab in patients with recurrent high‐grade glioma. Ann Oncol. 2009;20(9):1596–603. https://doi.org/10.1093/annonc/mdp032

41

Gan HK, Burgess AW, Clayton AHA, Scott AM. Targeting of a conformationally exposed, tumor‐specific epitope of EGFR as a strategy for cancer therapy. Cancer Res. 2012;72(12):2924–30. https://doi.org/10.1158/0008-5472.CAN-11-3898

42

Lassman AB, van den Bent MJ, Gan HK, Reardon DA, Kumthekar P, Butowski N, et al. Safety and efficacy of depatuxizumab mafodotin + temozolomide in patients with EGFR‐amplified, recurrent glioblastoma: results from an international phase Ⅰ multicenter trial. Neuro‐Oncology. 2019;21(1):106–14. https://doi.org/10.1093/neuonc/noy091

43

Schuster J, Lai RK, Recht LD, Reardon DA, Paleologos NA, Groves MD, et al. A phase Ⅱ, multicenter trial of rindopepimut (CDX‐110) in newly diagnosed glioblastoma: the ACT III study. Neuro‐Oncology. 2015;17(6):854–61. https://doi.org/10.1093/neuonc/nou348

44

Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII‐expressing glioblastoma (ACT IV): a randomised, double‐blind, international phase 3 trial. Lancet Oncol. 2017;18(10):1373–85. https://doi.org/10.1016/S1470-2045(17)30517-X

45

Drilon A. TRK inhibitors in TRK fusion‐positive cancers. Ann Oncol. 2019;30(Suppl_8):viii23–30. https://doi.org/10.1093/annonc/mdz282

46

Kaley T, Touat M, Subbiah V, Hollebecque A, Rodon J, Lockhart AC, et al. BRAF inhibition in BRAF(V600)‐mutant gliomas: results from the VE‐BASKET Study. J Clin Oncol. 2018;36(35):3477–84. https://doi.org/10.1200/JCO.2018.78.9990

47

Wen P, Stein A, van den Bent M, De Greve J, Dietrich S, De Vos F, et al. ACTR‐30. Updated efficacy and safety of dabrafenib plus trametinib in patients with recurrent/refractory braf V600E‐mutated high‐grade glioma (HGG) and low‐grade glioma (LGG). Neuro‐Oncology. 2019;21(Suppl_6):vi19–20. https://doi.org/10.1093/neuonc/noz175.073

48

Lombardi G, De Salvo GL, Brandes AA, Eoli M, Rudà R, Faedi M, et al. Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open‐label, randomised, controlled, phase 2 trial. Lancet Oncol. 2019;20(1):110–9. https://doi.org/10.1016/S1470-2045(18)30675-2

49

Alexander BM, Ba S, Berger MS, Berry DA, Cavenee WK, Chang SM, et al. Adaptive global innovative learning environment for glioblastoma: GBM AGILE. Clin Cancer Res. 2018;24(4):737–43. https://doi.org/10.1158/1078-0432.CCR-17-0764

50

Schnell O, Krebs B, Carlsen J, Miederer I, Goetz C, Goldbrunner RH, et al. Imaging of integrin αvβ3 expression in patients with malignant glioma by [18F] Galacto‐RGD positron emission tomography. Neuro‐Oncology. 2009;11(6):861–70. https://doi.org/10.1215/15228517-2009-024

51

Mikkelsen T, Brodie C, Finniss S, Berens ME, Rennert JL, Nelson K, et al. Radiation sensitization of glioblastoma by cilengitide has unanticipated schedule‐dependency. Int J Cancer. 2009;124(11):2719–27. https://doi.org/10.1002/ijc.24240

52

Gerstner ER, Ye X, Duda DG, Levine MA, Mikkelsen T, Kaley TJ, et al. A phase Ⅰ study of cediranib in combination with cilengitide in patients with recurrent glioblastoma. Neuro‐Oncology. 2015;17(10):1386–92. https://doi.org/10.1093/neuonc/nov085

53

Gilbert MR, Kuhn J, Lamborn KR, Lieberman F, Wen PY, Mehta M, et al. Cilengitide in patients with recurrent glioblastoma: the results of NABTC 03‐02, a phase Ⅱ trial with measures of treatment delivery. J Neurooncol. 2012;106(1):147–53. https://doi.org/10.1007/s11060-011-0650-1

54

Reardon DA, Fink KL, Mikkelsen T, Cloughesy TF, O'Neill A, Plotkin S, et al. Randomized phase Ⅱ study of cilengitide, an integrin‐targeting arginine‐glycine‐aspartic acid peptide, in recurrent glioblastoma multiforme. J. Clin. Oncol. 2008;26(34):5610–7. https://doi.org/10.1200/JCO.2008.16.7510

55

Eisele G, Wick A, Eisele AC, Clément PM, Tonn J, Tabatabai G, et al. Cilengitide treatment of newly diagnosed glioblastoma patients does not alter patterns of progression. J Neurooncol. 2014;117(1):141–5. https://doi.org/10.1007/s11060-014-1365-x

56

Nabors LB, Fink KL, Mikkelsen T, Grujicic D, Tarnawski R, Nam DH, et al. Two cilengitide regimens in combination with standard treatment for patients with newly diagnosed glioblastoma and unmethylated MGMT gene promoter: results of the open‐label, controlled, randomized phase Ⅱ CORE study. Neuro‐Oncology. 2015;17(5):708–17. https://doi.org/10.1093/neuonc/nou356

57

Stupp R, Hegi ME, Neyns B, Goldbrunner R, Schlegel U, Clement PMJ, et al. Phase I/IIa study of cilengitide and temozolomide with concomitant radiotherapy followed by cilengitide and temozolomide maintenance therapy in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010;28(16):2712–8. https://doi.org/10.1200/JCO.2009.26.6650

58

Stupp R, Hegi ME, Gorlia T, Erridge SC, Perry J, Hong YK, et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071‐22072 study): a multicentre, randomised, open‐label, phase 3 trial. Lancet Oncol. 2014;15(10):1100–8. https://doi.org/10.1016/S1470-2045(14)70379-1

59

Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature. 2003;426(6968):895–9. https://doi.org/10.1038/nature02263

60

Narayanan S, Cai CY, Assaraf YG, Guo HQ, Cui Q, Wei L, et al. Targeting the ubiquitin‐proteasome pathway to overcome anti‐cancer drug resistance. Drug Resist Updates. 2020;48:100663. https://doi.org/10.1016/j.drup.2019.100663

61

Friday BB, Anderson SK, Buckner J, Yu C, Giannini C, Geoffroy F, et al. Phase II trial of vorinostat in combination with bortezomib in recurrent glioblastoma: a north central cancer treatment group study. Neuro‐Oncology. 2012;14(2):215–21. https://doi.org/10.1093/neuonc/nor198

62

Kong XT, Nguyen NT, Choi YJ, Zhang G, Nguyen HN, Filka E, et al. Phase 2 study of bortezomib combined with temozolomide and regional radiation therapy for upfront treatment of patients with newly diagnosed glioblastoma multiforme: safety and efficacy assessment. Int J Radiat Oncol Biol Phys. 2018;100(5):1195–203. https://doi.org/10.1016/j.ijrobp.2018.01.001

63

Bota DA, Mason W, Kesari S, Magge R, Winograd B, Elias I, et al. Marizomib alone or in combination with bevacizumab in patients with recurrent glioblastoma: phase Ⅰ/Ⅱ clinical trial data. Neurooncol Adv. 2021;3(1):vdab142. https://doi.org/10.1093/noajnl/vdab142

64

Van Den Bent M, Eoli M, Sepulveda JM, Smits M, Walenkamp A, Frenel J‐S, et al. INTELLANCE 2/EORTC 1410 randomized phase Ⅱ study of Depatux‐M alone and with temozolomide vs temozolomide or lomustine in recurrent EGFR amplified glioblastoma. Neuro‐Oncology. 2019;22(5):684–93. https://doi.org/10.1093/neuonc/noz222

65

Chalmers AJ, Short S, Watts C, Herbert C, Morris A, Stobo J, et al. Phase I clinical trials evaluating olaparib in combination with radiotherapy (RT) and/or temozolomide (TMZ) in glioblastoma patients: results of OPARATIC and PARADIGM phase Ⅰ and early results of PARADIGM‐2. J Clin Oncol. 2018;36(15_suppl):2018. https://doi.org/10.1200/JCO.2018.36.15_suppl.2018

66

Khasraw M, McDonald KL, Rosenthal M, Lwin Z, Ashley DM, Wheeler H, et al. A randomized phase Ⅱ trial of veliparib (V), radiotherapy (RT) and temozolomide (TMZ) in patients (pts) with unmethylated MGMT (uMGMT) glioblastoma (GBM). J Clin Oncol. 2019;37(15_suppl):2011. https://doi.org/10.1200/JCO.2019.37.15_suppl.2011

67

Piotrowski A, Puduvalli V, Wen P, Campian J, Colman H, Pearlman M, et al. ACTR‐39. Pamiparib in combination with radiation therapy (RT) and/or temozolomide (TMZ) in patients with newly diagnosed or recurrent/refractory (R/R) glioblastoma (GBM); phase 1B/2 study update. Neuro‐Oncology. 2019;21(Suppl_6):vi21–22. https://doi.org/10.1093/neuonc/noz175.081

68

Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–41. https://doi.org/10.1038/nature14432

69

Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T‐cell therapy. N Engl J Med. 2016;375(26):2561–9. https://doi.org/10.1056/NEJMoa1610497

70

Sokratous G, Polyzoidis S, Ashkan K. Immune infiltration of tumor microenvironment following immunotherapy for glioblastoma multiforme. Hum Vaccin Immunother. 2017;13(11):2575–82. https://doi.org/10.1080/21645515.2017.1303582

71

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96. https://doi.org/10.1056/NEJMoa043330

72

Hodges TR, Ott M, Xiu J, Gatalica Z, Swensen J, Zhou S, et al. Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. Neuro‐Oncology. 2017;19(8):1047–57. https://doi.org/10.1093/neuonc/nox026

73

Zhao J, Chen AX, Gartrell RD, Silverman AM, Aparicio L, Chu T, et al. Immune and genomic correlates of response to anti‐PD‐1 immunotherapy in glioblastoma. Nat Med. 2019;25(3):462–9. https://doi.org/10.1038/s41591-019-0349-y

74

Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, et al. Neoadjuvant anti‐PD‐1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 2019;25(3):477–86. https://doi.org/10.1038/s41591-018-0337-7

75

Swartz AM, Batich KA, Fecci PE, Sampson JH. Peptide vaccines for the treatment of glioblastoma. J. Neurooncology. 2015;123(3):433–40. https://doi.org/10.1007/s11060-014-1676-y

76

Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE, Cavenee WK, et al. Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci. 2007;104(31):12867–72. https://doi.org/10.1073/pnas.0705158104

77

Heimberger AB, Crotty LE, Archer GE, Hess KR, Wikstrand CJ, Friedman AH, et al. Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors. Clin. Cancer Res. 2003;9(11):4247–54.

78

Tsuda N, Mochizuki K, Harada M, Sukehiro A, Kawano K, Yamada A, et al. Vaccination with predesignated or evidence‐based peptides for patients with recurrent gynecologic cancers. J Immunother. 2004;27(1):60–72. https://doi.org/10.1097/00002371-200401000-00006

79

Yajima N, Yamanaka R, Mine T, Tsuchiya N, Homma J, Sano M, et al. Immunologic evaluation of personalized peptide vaccination for patients with advanced malignant glioma. Clin Cancer Res. 2005;11(16):5900–11. https://doi.org/10.1158/1078-0432.CCR-05-0559

80

Terasaki M, Shibui S, Narita Y, Fujimaki T, Aoki T, Kajiwara K, et al. Phase I trial of a personalized peptide vaccine for patients positive for human leukocyte antigen‐A24 with recurrent or progressive glioblastoma multiforme. J Clin Oncol. 2011;29(3):337–44. https://doi.org/10.1200/JCO.2010.29.7499

81

Liau LM, Prins RM, Kiertscher SM, Odesa SK, Kremen TJ, Giovannone AJ, et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T‐cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res. 2005;11(15):5515–25. https://doi.org/10.1158/1078-0432.CCR-05-0464

82

Liau LM, Ashkan K, Tran DD, Campian JL, Trusheim JE, Cobbs CS, et al. First results on survival from a large phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med. 2018;16(1):142. https://doi.org/10.1186/s12967-018-1507-6

83

Preusser M, van den Bent MJ. Autologous tumor lysate‐loaded dendritic cell vaccination (DCVax‐L) in glioblastoma: breakthrough or fata morgana. Neuro‐Oncology. 2022:noac281. https://doi.org/10.1093/neuonc/noac281

84

Prins RM, Soto H, Konkankit V, Odesa SK, Eskin A, Yong WH, et al. Gene expression profile correlates with T‐cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin Cancer Res. 2011;17(6):1603–15. https://doi.org/10.1158/1078-0432.CCR-10-2563

85

Wollmann G, Ozduman K, van den Pol AN. Oncolytic virus therapy for glioblastoma multiforme: concepts and candidates. Cancer J. 2012;18(1):69–81. https://doi.org/10.1097/PPO.0b013e31824671c9

86

Saha D, Martuza RL, Rabkin SD. Curing glioblastoma: oncolytic HSV‐IL12 and checkpoint blockade. Oncoscience. 2017;4(7‐8):67–9. https://doi.org/10.18632/oncoscience.359

87

Daubon T, Hemadou A, Romero Garmendia I, Saleh M. Glioblastoma immune landscape and the potential of new immunotherapies. Front Immunol. 2020;11:585616. https://doi.org/10.3389/fimmu.2020.585616

88

Liu P, Wang Y, Wang Y, Kong Z, Chen W, Li J, et al. Effects of oncolytic viruses and viral vectors on immunity in glioblastoma. Gene Ther. 2022;29(3‐4):115–26. https://doi.org/10.1038/s41434-020-00207-9

89

Sandmair AM, Loimas S, Puranen P, Immonen A, Kossila M, Puranen M, et al. Thymidine kinase gene therapy for human malignant glioma, using replication‐deficient retroviruses or adenoviruses. Hum Gene Ther. 2000;11(16):2197–205. https://doi.org/10.1089/104303400750035726

90

Cloughesy TF, Landolfi J, Hogan DJ, Bloomfield S, Carter B, Chen CC, et al. Phase 1 trial of vocimagene amiretrorepvec and 5‐fluorocytosine for recurrent high‐grade glioma. Sci Transl Med. 2016;8(341):341ra75. https://doi.org/10.1126/scitranslmed.aad9784

91

Cloughesy TF, Petrecca K, Walbert T, Butowski N, Salacz M, Perry J, et al. Effect of vocimagene amiretrorepvec in combination with flucytosine vs standard of care on survival following tumor resection in patients with recurrent high‐grade glioma: a randomized clinical trial. JAMA Oncol. 2020;6(12):1939–46. https://doi.org/10.1001/jamaoncol.2020.3161

92

Brenner AJ, Peters KB, Vredenburgh J, Bokstein F, Blumenthal DT, Yust‐Katz S, et al. Safety and efficacy of VB‐111, an anticancer gene therapy, in patients with recurrent glioblastoma: results of a phase Ⅰ/Ⅱ study. Neuro‐Oncology. 2020;22(5):694–704. https://doi.org/10.1093/neuonc/noz231

93

Desjardins A, Gromeier M, Herndon JE 2nd, Beaubier N, Bolognesi DP, Friedman AH, et al. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med. 2018;379(2):150–61. https://doi.org/10.1056/NEJMoa1716435

94

Todo T, Ito H, Ino Y, et al. Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: a phase 2 trial. Nat Med. 2022;28:1630–1639. https://doi.org/10.1038/s41591-022-01897-x

95

Wen PY, Reardon DA, Forst DA, Lee EQ, Haas B, Daoud T, et al. Evaluation of tumor responses and overall survival in patients with recurrent glioblastoma (GBM) from a phase Ⅱa trial of a CMV vaccine immunotherapeutic candidate (VBI‐1901). J Clin Oncol. 2022;40(16_suppl):2014. https://doi.org/10.1200/JCO.2022.40.16_suppl.2014

96

Sahakyan V, Pozzo E, Duelen R, Deprest J, Sampaolesi M. Methotrexate and valproic acid affect early neurogenesis of human amniotic fluid stem cells from myelomeningocele. Stem Cells Int. 2017;2017:6101609. https://doi.org/10.1155/2017/6101609

97

Liu P, Jiang C. Brain‐targeting drug delivery systems. Wiley Interdiscip Rev. Nanomed Nanobiotechnol. 2022;14(5):e1818. https://doi.org/10.1002/wnan.1818

98

Pinto M, Silva V, Barreiro S, Silva R, Remião F, Borges F, et al. Brain drug delivery and neurodegenerative diseases: polymeric PLGA‐based nanoparticles as a forefront platform. Ageing Res Rev. 2022;79:101658. https://doi.org/10.1016/j.arr.2022.101658

99

Power EA, Rechberger JS, Gupta S, Schwartz JD, Daniels DJ, Khatua S. Drug delivery across the blood‐brain barrier for the treatment of pediatric brain tumors—an update. Adv Drug Deliv Rev. 2022;185:114303. https://doi.org/10.1016/j.addr.2022.114303

100

Quader S, Kataoka K, Cabral H. Nanomedicine for brain cancer. Adv Drug Deliv Rev. 2022;182:114115. https://doi.org/10.1016/j.addr.2022.114115

101

Dapash M, Hou D, Castro B, Lee‐Chang C, Lesniak MS. The interplay between glioblastoma and its microenvironment. Cells. 2021;10(9):2257. https://doi.org/10.3390/cells10092257

102

Radin DP, Tsirka SE. Interactions between tumor cells, neurons, and microglia in the glioma microenvironment. Int J Mol Sci. 2020;21(22):8476. https://doi.org/10.3390/ijms21228476

103

Zhu S, Zhang T, Zheng L, Liu H, Song W, Liu D, et al. Combination strategies to maximize the benefits of cancer immunotherapy. J Hematol Oncol. 2021;14(1):156. https://doi.org/10.1186/s13045-021-01164-5

104

Mottini C, Napolitano F, Li Z, Gao X, Cardone L. Computer‐aided drug repurposing for cancer therapy: approaches and opportunities to challenge anticancer targets. Semin Cancer Biol. 2021;68:59–74. https://doi.org/10.1016/j.semcancer.2019.09.023

105

Heynckes S, Daka K, Franco P, Gaebelein A, Frenking JH, Doria‐Medina R, et al. Crosslink between Temozolomide and PD‐L1 immune‐checkpoint inhibition in glioblastoma multiforme. BMC Cancer. 2019;19(1):117. https://doi.org/10.1186/s12885-019-5308-y

106

Giles AJ, Hutchinson MKND, Sonnemann HM, Jung J, Fecci PE, Ratnam NM, et al. Dexamethasone‐induced immunosuppression: mechanisms and implications for immunotherapy. J Immunother Cancer. 2018;6(1):51. https://doi.org/10.1186/s40425-018-0371-5

107

Mensali N, Inderberg EM. Emerging biomarkers for immunotherapy in glioblastoma. Cancers. 2022;14(8):1940. https://doi.org/10.3390/cancers14081940

108

Lechpammer M, Rao R, Shah S, Mirheydari M, Bhattacharya D, Koehler A, et al. Advances in immunotherapy for the treatment of adult glioblastoma: overcoming chemical and physical barriers. Cancers. 2022;14(7):1627. https://doi.org/10.3390/cancers14071627

109

Nayak L, Molinaro AM, Peters K, Clarke JL, Jordan JT, de Groot J, et al. Randomized phase Ⅱ and biomarker study of pembrolizumab plus bevacizumab versus pembrolizumab alone for patients with recurrent glioblastoma. Clin Cancer Res. 2021;27(4):1048–57. https://doi.org/10.1158/1078-0432.CCR-20-2500

110

Daniel P, Meehan B, Sabri S, Jamali F, Sarkaria JN, Choi D, et al. Detection of temozolomide‐induced hypermutation and response to PD‐1 checkpoint inhibitor in recurrent glioblastoma. Neuro‐oncol Adv. 2022;4(1):vdac076. https://doi.org/10.1093/noajnl/vdac076

111

Hodges TR, Ott M, Xiu J, Gatalica Z, Swensen J, Zhou S, et al. Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. Neuro‐Oncology. 2017;19(8):1047–57. https://doi.org/10.1093/neuonc/nox026

112

Chongsathidkiet P, Jackson C, Koyama S, Loebel F, Cui X, Farber SH, et al. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med. 2018;24(9):1459–68. https://doi.org/10.1038/s41591-018-0135-2

113

Weenink B, French PJ, Sillevis Smitt PAE, Debets R, Geurts M. Immunotherapy in glioblastoma: current shortcomings and future perspectives. Cancers. 2020;12(3):751. https://doi.org/10.3390/cancers12030751

114

Patel V, Shah J. The current and future aspects of glioblastoma: immunotherapy a new hope? Eur J Neurosci. 2021;54(3):5120–42. https://doi.org/10.1111/ejn.15343

115

Arvanitis CD, Ferraro GB, Jain RK. The blood‐brain barrier and blood‐tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20(1):26–41. https://doi.org/10.1038/s41568-019-0205-x

116

Schwarze JK, Duerinck J, Dufait I, Awada G, Klein S, Fischbuch L, et al. A phase Ⅰ clinical trial on intratumoral and intracavitary administration of ipilimumab and nivolumab in patients with recurrent glioblastoma. J Clin Oncol. 2020;38(15_suppl):2534. https://doi.org/10.1200/JCO.2020.38.15_suppl.2534

117

Guo X, Wang S, Wang Y, Ma W. Anti‐PD‐1 plus anti‐VEGF therapy in multiple intracranial metastases of a hypermutated, IDH wild‐type glioblastoma. Neuro‐Oncology. 2021;23(4):699–701. https://doi.org/10.1093/neuonc/noab005

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 18 December 2022
Accepted: 13 February 2023
Published: 05 March 2023
Issue date: April 2023

Copyright

© 2023 The Authors.

Acknowledgements

ACKNOWLEDGMENTS

None.

Rights and permissions

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return