Journal Home > Volume 2 , Issue 6

Head and neck cancer (HNC) is the seventh most prevalent malignancy worldwide in 2020. Cancer metastasis is the main cause of poor prognosis in HNC patients. Recently, circular RNAs (circRNAs), initially thought to have no biological function, are attracting increasing attention, and their crucial roles in mediating HNC metastasis are being extensively investigated. Existing studies have shown that circRNAs primarily function through miRNA sponges, transcriptional regulation, interacting with RNA‐binding proteins (RBPs) and as translation templates. Among these functions, the function of miRNA sponge is the most prominent. In this review, we summarized the reported circRNAs involved in HNC metastasis, aiming to elucidate the regulatory relationship between circRNAs and HNC metastasis. Furthermore, we summarized the latest advances in the epidemiological information of HNC metastasis and the tumor metastasis theories, the biogenesis, characterization and functional mechanisms of circRNAs, and their potential clinical applications. Although the research on circRNAs is still in its infancy, circRNAs are expected to serve as prognostic markers and effective therapeutic targets to inhibit HNC metastasis and significantly improve the prognosis of HNC patients.


menu
Abstract
Full text
Outline
About this article

Emerging roles of circular RNAs in the invasion and metastasis of head and neck cancer: Possible functions and mechanisms

Show Author's information Shouyi Tang1,Luyao Cai1,Zhen Wang1Dan Pan1Qing Wang1Yingqiang Shen1 ( )Yu Zhou1,2( )Qianming Chen1
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
State Institute of Drug/Medical Device Clinical Trial, West China Hospital of Stomatology, Chengdu, China

Shouyi Tang and Luyao Cai contributed equally to this study.

Abstract

Head and neck cancer (HNC) is the seventh most prevalent malignancy worldwide in 2020. Cancer metastasis is the main cause of poor prognosis in HNC patients. Recently, circular RNAs (circRNAs), initially thought to have no biological function, are attracting increasing attention, and their crucial roles in mediating HNC metastasis are being extensively investigated. Existing studies have shown that circRNAs primarily function through miRNA sponges, transcriptional regulation, interacting with RNA‐binding proteins (RBPs) and as translation templates. Among these functions, the function of miRNA sponge is the most prominent. In this review, we summarized the reported circRNAs involved in HNC metastasis, aiming to elucidate the regulatory relationship between circRNAs and HNC metastasis. Furthermore, we summarized the latest advances in the epidemiological information of HNC metastasis and the tumor metastasis theories, the biogenesis, characterization and functional mechanisms of circRNAs, and their potential clinical applications. Although the research on circRNAs is still in its infancy, circRNAs are expected to serve as prognostic markers and effective therapeutic targets to inhibit HNC metastasis and significantly improve the prognosis of HNC patients.

Keywords: circRNA, head and neck cancer, invasion, metastsais

References(201)

1

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660

2

Kang H, Kiess A, Chung CH. Emerging biomarkers in head and neck cancer in the era of genomics. Nat Rev Clin Oncol. 2015;12(1):11–26. https://doi.org/10.1038/nrclinonc.2014.192

3

Pfister DG, Spencer S, Adelstein D, Adkins D, Anzai Y, Brizel DM, et al. Head and neck cancers, version 2.2020, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2020;18(7):873–98. https://doi.org/10.6004/jnccn.2020.0031

4

Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009;45(4–5):309–16. https://doi.org/10.1016/j.oraloncology.2008.06.002

5

Lee TK, Poon RTP, Wo JY, Ma S, Guan X‐Y, Myers JN, et al. Lupeol suppresses cisplatin‐induced nuclear factor‐κB activation in head and neck squamous cell carcinoma and inhibits local invasion and nodal metastasis in an orthotopic nude mouse model. Cancer Res. 2007;67(18):8800–9. https://doi.org/10.1158/0008-5472.CAN-07-0801

6

Sethi N, Kang Y. Unravelling the complexity of metastasis—molecular understanding and targeted therapies. Nat Rev Cancer. 2011;11(10):735–48. https://doi.org/10.1038/nrc3125

7

Babaei G, Aziz SG, Jaghi N. EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomed Pharmacother. 2021;133:110909. https://doi.org/10.1016/j.biopha.2020.110909

8

Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96. https://doi.org/10.1038/nrm3758

9

Ye X, Weinberg RA. Epithelial‐Mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol. 2015;25(11):675–86. https://doi.org/10.1016/j.tcb.2015.07.012

10

Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29(3):212–26. https://doi.org/10.1016/j.tcb.2018.12.001

11

Mowers EE, Sharifi MN, Macleod KF. Autophagy in cancer metastasis. Oncogene. 2017;36(12):1619–30. https://doi.org/10.1038/onc.2016.333

12

Mathew R, Karantza‐Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer. 2007;7(12):961–7. https://doi.org/10.1038/nrc2254

13

Marsh T, Debnath J. Autophagy suppresses breast cancer metastasis by degrading NBR1. Autophagy. 2020;16(6):1164–5. https://doi.org/10.1080/15548627.2020.1753001

14

LI S, LI Q. Cancer stem cells and tumor metastasis. Int J Oncol. 2014;44(6):1806–12. https://doi.org/10.3892/ijo.2014.2362

15

Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–91. https://doi.org/10.1038/s41576-019-0158-7

16

Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single‐stranded covalently closed circular RNA molecules existing as highly base‐paired rod‐like structures. Proc Natl Acad Sci. 1976;73(11):3852–6. https://doi.org/10.1073/pnas.73.11.3852

17

Cocquerelle C, Mascrez B, Hétuin D, Bailleul B. Mis‐splicing yields circular RNA molecules. FASEB J. 1993;7(1):155–60. https://doi.org/10.1096/fasebj.7.1.7678559

18

Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell‐type specific features of circular RNA expression. PLoS Genet. 2013;9(9):e1003777. https://doi.org/10.1371/journal.pgen.1003777

19

Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141–57. https://doi.org/10.1261/rna.035667.11

20

Wang PL, Bao Y, Yee M‐C, Barrett SP, Hogan GJ, Olsen MN, et al. Circular RNA is expressed across the eukaryotic tree of life. PLoS One. 2014;9(3):e90859. https://doi.org/10.1371/journal.pone.0090859

21

Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 2015;10(2):170–7. https://doi.org/10.1016/j.celrep.2014.12.019

22

Goodall GJ, Wickramasinghe VO. RNA in cancer. Nat Rev Cancer. 2021;21(1):22–36. https://doi.org/10.1038/s41568-020-00306-0

23

Wang Y, Mo Y, Gong Z, Yang X, Yang M, Zhang S, et al. Circular RNAs in human cancer. Mol Cancer. 2017;16(1):25. https://doi.org/10.1186/s12943-017-0598-7

24

Qu S, Liu Z, Yang X, Zhou J, Yu H, Zhang R, et al. The emerging functions and roles of circular RNAs in cancer. Cancer Lett. 2018;414:301–9. https://doi.org/10.1016/j.canlet.2017.11.022

25

Bach D‐H, Lee SK, Sood AK. Circular RNAs in cancer. Mol Ther Nucleic Acids. 2019;16:118–29. https://doi.org/10.1016/j.omtn.2019.02.005

26

Zhang J, Hu H, Zhao Y, Zhao Y. CDR1as is overexpressed in laryngeal squamous cell carcinoma to promote the tumour's progression via miR‐7 signals. Cell Prolif. 2018;51(6):e12521. https://doi.org/10.1111/cpr.12521

27

Dou Z, Gao L, Ren W, Zhang H, Wang X, Li S, et al. CiRS‐7 functions as a ceRNA of RAF‐1/PIK3CD to promote metastatic progression of oral squamous cell carcinoma via MAPK/AKT signaling pathways. Exp Cell Res. 2020;396(2):112290. https://doi.org/10.1016/j.yexcr.2020.112290

28

Gao W, Guo H, Niu M, Zheng X, Zhang Y, Xue X, et al. circPARD3 drives malignant progression and chemoresistance of laryngeal squamous cell carcinoma by inhibiting autophagy through the PRKCI‐Akt‐mTOR pathway. Mol Cancer. 2020;19(1):166. https://doi.org/10.1186/s12943-020-01279-2

29

Xia B, Hong T, He X, Hu X, Gao Y. A circular RNA derived from MMP9 facilitates oral squamous cell carcinoma metastasis through regulation of MMP9 mRNA stability. Cell Transplant. 2019;28(12):1614–23. https://doi.org/10.1177/0963689719875409

30

Ke Z, Xie F, Zheng C, Chen D. CircHIPK3 promotes proliferation and invasion in nasopharyngeal carcinoma by abrogating miR‐4288‐induced ELF3 inhibition. J Cell Physiol. 2019;234(2):1699–706. https://doi.org/10.1002/jcp.27041

31

Hong X, Liu N, Liang Y, He Q, Yang X, Lei Y, et al. Circular RNA CRIM1 functions as a ceRNA to promote nasopharyngeal carcinoma metastasis and docetaxel chemoresistance through upregulating FOXQ1. Mol Cancer. 2020;19(1):33. https://doi.org/10.1186/s12943-020-01149-x

32

Zhang W, Liu T, Li T, Zhao X. Hsa_circRNA_102002 facilitates metastasis of papillary thyroid cancer through regulating miR‐488‐3p/HAS2 axis. Cancer Gene Ther. 2020;28(3–4):279–93. https://doi.org/10.1038/s41417-020-00218-z

33

Li W, Lu H, Wang H, Ning X, Liu Q, Zhang H, et al. Circular RNA TGFBR2 acts as a ceRNA to suppress nasopharyngeal carcinoma progression by sponging miR‐107. Cancer Lett. 2021;499:301–13. https://doi.org/10.1016/j.canlet.2020.11.001

34

Peng Q‐S, Cheng Y‐N, Zhang W‐B, Fan H, Mao Q‐H, Xu P. circRNA_0000140 suppresses oral squamous cell carcinoma growth and metastasis by targeting miR‐31 to inhibit Hippo signaling pathway. Cell Death Dis. 2020;11(2):112. https://doi.org/10.1038/s41419-020-2273-y

35

Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020;6(1):92. https://doi.org/10.1038/s41572-020-00224-3

36

Mody MD, Rocco JW, Yom SS, Haddad RI, Saba NF. Head and neck cancer. Lancet. 2021;398(10318):2289–99. https://doi.org/10.1016/S0140-6736(21)01550-6

37

Bossi P, Miceli R, Locati LD, Ferrari D, Vecchio S, Moretti G, et al. A randomized, phase 2 study of cetuximab plus cisplatin with or without paclitaxel for the first‐line treatment of patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck. Ann Oncol. 2017;28(11):2820–6. https://doi.org/10.1093/annonc/mdx439

38

Chow LQM. Head and neck cancer. N Engl J Med. 2020;382(1):60–72. https://doi.org/10.1056/NEJMra1715715

39

Chen Y‐P, Chan ATC, Le Q‐T, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet. 2019;394(10192):64–80. https://doi.org/10.1016/S0140-6736(19)30956-0

40

Tang L‐L, Chen W‐Q, Xue W‐Q, He Y‐Q, Zheng R‐S, Zeng Y‐X, et al. Global trends in incidence and mortality of nasopharyngeal carcinoma. Cancer Lett. 2016;374(1):22–30. https://doi.org/10.1016/j.canlet.2016.01.040

41

Lai S‐Z, Li W‐F, Chen L, Luo W, Chen Y‐Y, Liu L‐Z, et al. How does intensity‐modulated radiotherapy versus conventional two‐dimensional radiotherapy influence the treatment results in nasopharyngeal carcinoma patients? Int J Radiat Oncol Biol Phys. 2011;80(3):661–8. https://doi.org/10.1016/j.ijrobp.2010.03.024

42

Lee AWM, Ma BBY, Ng WT, Chan ATC. Management of nasopharyngeal carcinoma: current practice and future perspective. J Clin Oncol. 2015;33(29):3356–64. https://doi.org/10.1200/JCO.2015.60.9347

43

Razak ARA, Siu LL, Liu F‐F, Ito E, O'Sullivan B, Chan K. Nasopharyngeal carcinoma: the next challenges. Eur J Cancer. 2010;46(11):1967–78. https://doi.org/10.1016/j.ejca.2010.04.004

44

Mao Y‐P, Tang L‐L, Chen L, Sun Y, Qi Z‐Y, Zhou G‐Q, et al. Prognostic factors and failure patterns in non‐metastatic nasopharyngeal carcinoma after intensity‐modulated radiotherapy. Chin J Cancer. 2016;35(1):103. https://doi.org/10.1186/s40880-016-0167-2

45

Zeng L, Tian Y‐M, Huang Y, Sun X‐M, Wang F‐H, Deng X‐W, et al. Retrospective analysis of 234 nasopharyngeal carcinoma patients with distant metastasis at initial diagnosis: therapeutic approaches and prognostic factors. PLoS One. 2014;9(9):e108070. https://doi.org/10.1371/journal.pone.0108070

46

Shen LJ, Wang SY, Xie GF, Zeng Q, Chen C, Dong AN, et al. Subdivision of M category for nasopharyngeal carcinoma with synchronous metastasis: time to expand the M categorization system. Chin J Cancer. 2015;34(10):450–8. https://doi.org/10.1186/s40880-015-0031-9

47

Pan CC, Lu J, Chen P, Li X, Jin YD, Zhao M, et al. Evaluation of the prognostic significance of refinement and stratification of distant metastasis status in 1016 cases of nasopharyngeal carcinoma. Zhonghua Zhong Liu Za Zhi. 2013;35(8):595–9.

48

Cabanillas ME, McFadden DG, Durante C. Thyroid cancer. Lancet. 2016;388(10061):2783–95. https://doi.org/10.1016/S0140-6736(16)30172-6

49

Schlumberger M, Leboulleux S. Current practice in patients with differentiated thyroid cancer. Nat Rev Endocrinol. 2021;17(3):176–88. https://doi.org/10.1038/s41574-020-00448-z

50

Lundgren CI, Hall P, Dickman PW, Zedenius J. Clinically significant prognostic factors for differentiated thyroid carcinoma: a population‐based, nested case‐control study. Cancer. 2006;106(3):524–31. https://doi.org/10.1002/cncr.21653

51

Sancho JJ, Lennard TWJ, Paunovic I, Triponez F, Sitges‐Serra A. Prophylactic central neck disection in papillary thyroid cancer: a consensus report of the European Society of Endocrine Surgeonsendocrine surgeons (ESES). Langenbecks Arch Surg. 2014;399(2):155–63. https://doi.org/10.1007/s00423-013-1152-8

52

Ito Y, Kudo T, Kobayashi K, Miya A, Ichihara K, Miyauchi A. Prognostic factors for recurrence of papillary thyroid carcinoma in the lymph nodes, lung, and bone: analysis of 5768 patients with average 10‐year follow‐up. World J Surg. 2012;36(6):1274–8. https://doi.org/10.1007/s00268-012-1423-5

53

Cordioli MICV, Moraes L, Cury AN, Cerutti JM. Are we really at the dawn of understanding sporadic pediatric thyroid carcinoma? Endocr Relat Cancer. 2015;22(6):R311–24. https://doi.org/10.1530/ERC-15-0381

54

Alzahrani AS, Alkhafaji D, Tuli M, Al‐Hindi H, Sadiq BB. Comparison of differentiated thyroid cancer in children and adolescents (≤20 years) with young adults. Clin Endocrinol. 2016;84(4):571–7. https://doi.org/10.1111/cen.12845

55

Ge M‐H, Cao J, Wang J‐Y, Huang Y‐Q, Lan X‐B, Yu B, et al. Nomograms predicting disease‐specific regional recurrence and distant recurrence of papillary thyroid carcinoma following partial or total thyroidectomy. Medicine. 2017;96(30):e7575. https://doi.org/10.1097/MD.0000000000007575

56

Black DL. Mechanisms of alternative pre‐messenger RNA splicing. Annu Rev Biochem. 2003;72:291–336. https://doi.org/10.1146/annurev.biochem.72.121801.161720

57

Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. Nature. 2010;463(7280):457–63. https://doi.org/10.1038/nature08909

58

Chen L‐L. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020;21(8):475–90. https://doi.org/10.1038/s41580-020-0243-y

59

Guarnerio J, Bezzi M, Jeong JC, Paffenholz SV, Berry K, Naldini MM, et al. Oncogenic role of fusion‐circRNAs derived from cancer‐associated chromosomal translocations. Cell. 2016;165(2):289–302. https://doi.org/10.1016/j.cell.2016.03.020

60

Enuka Y, Lauriola M, Feldman ME, Sas‐Chen A, Ulitsky I, Yarden Y. Circular RNAs are long‐lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 2015;44(3):1370–83. https://doi.org/10.1093/nar/gkv1367

61

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–8. https://doi.org/10.1038/nature11928

62

Park OH, Ha H, Lee Y, Boo SH, Kwon DH, Song HK, et al. Endoribonucleolytic cleavage of m6A‐containing RNAs by RNase P/MRP complex. Mol Cell. 2019;74(3):494–507.e8. https://doi.org/10.1016/j.molcel.2019.02.034

63

Liu C‐X, Li X, Nan F, Jiang S, Gao X, Guo S‐K, et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell. 2019;177(4):865–80.e21. https://doi.org/10.1016/j.cell.2019.03.046

64

Rybak‐Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;58(5):870–85. https://doi.org/10.1016/j.molcel.2015.03.027

65

Dong R, Ma X‐K, Chen L‐L, Yang L. Increased complexity of circRNA expression during species evolution. RNA Biol. 2017;14(8):1064–74. https://doi.org/10.1080/15476286.2016.1269999

66

Nicolet BP, Engels S, Aglialoro F, van den Akker E, von Lindern M, Wolkers MC. Circular RNA expression in human hematopoietic cells is widespread and cell‐type specific. Nucleic Acids Res. 2018;46(16):8168–80. https://doi.org/10.1093/nar/gky721

67

Xu T, Wu J, Han P, Zhao Z, Song X. Circular RNA expression profiles and features in human tissues: a study using RNA‐seq data. BMC Genomics. 2017;18(suppl 6):680. https://doi.org/10.1186/s12864-017-4029-3

68

You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nature Neurosci. 2015;18(4):603–10. https://doi.org/10.1038/nn.3975

69

Huang C, Liang D, Tatomer DC, Wilusz JE. A length‐dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev. 2018;32(9–10):639–44. https://doi.org/10.1101/gad.314856.118

70

Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell. 2011;146(3):353–8. https://doi.org/10.1016/j.cell.2011.07.014

71

Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding‐independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465(7301):1033–8. https://doi.org/10.1038/nature09144

72

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8. https://doi.org/10.1038/nature11993

73

Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 2017;14(3):361–9. https://doi.org/10.1080/15476286.2017.1279788

74

Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016;44(6):2846–58. https://doi.org/10.1093/nar/gkw027

75

Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, et al. Circular non‐coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun. 2016;7:12429. https://doi.org/10.1038/ncomms12429

76

Pamudurti NR, Bartok O, Jens M, Ashwal‐Fluss R, Stottmeister C, Ruhe L, et al. Translation of CircRNAs. Mol Cell. 2017;66(1):9–21.e7. https://doi.org/10.1016/j.molcel.2017.02.021

77

Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, et al. Extensive translation of circular RNAs driven by N6‐methyladenosine. Cell Res. 2017;27(5):626–41. https://doi.org/10.1038/cr.2017.31

78

Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, et al. Circ‐ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 2017;66(1):22–37.e9. https://doi.org/10.1016/j.molcel.2017.02.017

79

Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene. 2018;37(13):1805–14. https://doi.org/10.1038/s41388-017-0019-9

80

Prats A‐C, David F, Diallo LH, Roussel E, Tatin F, Garmy‐Susini B, et al. Circular RNA, the key for translation. Int J Mol Sci. 2020;21(22):8591. https://doi.org/10.3390/ijms21228591

81

Dong R, Zhang X‐O, Zhang Y, Ma X‐K, Chen L‐L, Yang L. CircRNA‐derived pseudogenes. Cell Res. 2016;26(6):747–50. https://doi.org/10.1038/cr.2016.42

82

Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al. Exon‐intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22(3):256–64. https://doi.org/10.1038/nsmb.2959

83

Conn VM, Hugouvieux V, Nayak A, Conos SA, Capovilla G, Cildir G, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R‐loop formation. Nature plants. 2017;3:17053. https://doi.org/10.1038/nplants.2017.53

84

Liu Y, Su H, Zhang J, Liu Y, Feng C, Han F. Back‐spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize. PLoS Biol. 2020;18(1):e3000582. https://doi.org/10.1371/journal.pbio.3000582

85

Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, et al. miRNA‐dependent gene silencing involving Ago2‐mediated cleavage of a circular antisense RNA. EMBO J. 2011;30(21):4414–22. https://doi.org/10.1038/emboj.2011.359

86

Su C, Han Y, Zhang H, Li Y, Yi L, Wang X, et al. CiRS‐7 targeting miR‐7 modulates the progression of non‐small cell lung cancer in a manner dependent on NF‐κB signalling. J Cell Mol Med. 2018;22(6):3097–107. https://doi.org/10.1111/jcmm.13587

87

Li R, Ke S, Meng F, Lu J, Zou X, He Z, et al. CiRS‐7 promotes growth and metastasis of esophageal squamous cell carcinoma via regulation of miR‐7/HOXB13. Cell Death Dis. 2018;9(8):838. https://doi.org/10.1038/s41419-018-0852-y

88

Zhang F, Xu Y, Ye W, Jiang J, Wu C. Circular RNA S‐7 promotes ovarian cancer EMT via sponging miR‐641 to up‐regulate ZEB1 and MDM2. Biosci Rep. 2020;40(7):BSR20200825. https://doi.org/10.1042/BSR20200825

89

Ichimura Y, Kominami E, Tanaka K, Komatsu M. Selective turnover of p62/A170/SQSTM1 by autophagy. Autophagy. 2008;4(8):1063–6. https://doi.org/10.4161/auto.6826

90

Murphy G, Nagase H. Progress in matrix metalloproteinase research. Mol Aspects Med. 2008;29(5):290–308. https://doi.org/10.1016/j.mam.2008.05.002

91

Gonzalez‐Avila G, Sommer B, Mendoza‐Posada DA, Ramos C, Garcia‐Hernandez AA, Falfan‐Valencia R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol. 2019;137:57–83. https://doi.org/10.1016/j.critrevonc.2019.02.010

92

Luukkaa M, Vihinen P, Kronqvist P, Vahlberg T, Pyrhönen S, Kähäri VM, et al. Association between high collagenase‐3 expression levels and poor prognosis in patients with head and neck cancer. Head Neck. 2006;28(3):225–34. https://doi.org/10.1002/hed.20322

93

Patel BP, Shah SV, Shukla SN, Shah PM, Patel PS. Clinical significance of MMP‐2 and MMP‐9 in patients with oral cancer. Head Neck. 2007;29(6):564–72. https://doi.org/10.1002/hed.20561

94

Virós D, Camacho M, Zarraonandia I, García J, Quer M, Vila L, et al. Prognostic role of MMP‐9 expression in head and neck carcinoma patients treated with radiotherapy or chemoradiotherapy. Oral Oncol. 2013;49(4):322–5. https://doi.org/10.1016/j.oraloncology.2012.10.005

95

Inaba H, Sugita H, Kuboniwa M, Iwai S, Hamada M, Noda T, et al. Porphyromonas gingivalis promotes invasion of oral squamous cell carcinoma through induction of proMMP9 and its activation. Cell Microbiol. 2014;16(1):131–45. https://doi.org/10.1111/cmi.12211

96

White EJF, Matsangos AE, Wilson GM. AUF1 regulation of coding and noncoding RNA: AUF1 regulation of coding and noncoding RNA. Wiley Interdiscip Rev: RNA. 2016;8(2):e1393. https://doi.org/10.1002/wrna.1393

97

Zhang Y, Liu Q, Liao Q. CircHIPK3: a promising cancer‐related circular RNA. Am J Transl Res. 2020;12(10):6694–704.

98

Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 2014;28(20):2233–47. https://doi.org/10.1101/gad.251926.114

99

Wang J, Zhao SY, Ouyang SS, Huang ZK, Luo Q, Liao L. Circular RNA circHIPK3 acts as the sponge of microRNA‐124 to promote human oral squamous cell carcinoma cells proliferation. Zhonghua Kou Qiang Yi Xue Za Zhi. 2018;53(8):546–51. https://doi.org/10.3760/cma.j.issn.1002-0098.2018.08.009

100

Wang J‐L, Chen Z‐F, Chen H‐M, Wang M‐Y, Kong X, Wang Y‐C, et al. Elf3 drives β‐catenin transactivation and associates with poor prognosis in colorectal cancer. Cell Death Dis. 2014;5(5):1263. https://doi.org/10.1038/cddis.2014.206

101

Gajulapalli VNR, Samanthapudi VSK, Pulaganti M, Khumukcham SS, Malisetty VL, Guruprasad L, et al. A transcriptional repressive role for epithelial‐specific ETS factor ELF3 on oestrogen receptor alpha in breast cancer cells. Biochem J. 2016;473(8):1047–61. https://doi.org/10.1042/BCJ20160019

102

Wang H, Yu Z, Huo S, Chen Z, Ou Z, Mai J, et al. Overexpression of ELF3 facilitates cell growth and metastasis through PI3K/Akt and ERK signaling pathways in non‐small cell lung cancer. Int J Biochem Cell Biol. 2018;94:98–106. https://doi.org/10.1016/j.biocel.2017.12.002

103

Wang L, Liang Y, Mao Q, Xia W, Chen B, Shen H, et al. Circular RNA circCRIM1 inhibits invasion and metastasis in lung adenocarcinoma through the microRNA (miR)‐182/miR‐93‐leukemia inhibitory factor receptor pathway. Cancer Sci. 2019;110(9):2960–72. https://doi.org/10.1111/cas.14131

104

Zhang S‐J, Ma J, Wu J‐C, Hao Z‐Z, Zhang Y‐A, Zhang Y‐J. Circular RNA circCRIM1 suppresses lung adenocarcinoma cell migration, invasion, EMT, and glycolysis through regulating miR‐125b‐5p/BTG2 axis. Eur Rev Med Pharmacol Sci. 2020;24(7):3761–74. https://doi.org/10.26355/eurrev_202004_20841

105

Liu J, Feng G, Li Z, Li R, Xia P. Knockdown of CircCRIM1 inhibits HDAC4 to impede osteosarcoma proliferation, migration, and invasion and facilitate autophagy by targeting miR‐432‐5p. Cancer Manag Res. 2020;12:10199–210. https://doi.org/10.2147/CMAR.S253130

106

Qiao Y, Jiang X, Lee ST, Karuturi RKM, Hooi SC, Yu Q. FOXQ1 regulates epithelial‐mesenchymal transition in human cancers. Cancer Res. 2011;71(8):3076–86. https://doi.org/10.1158/0008-5472.CAN-10-2787

107

Peng N, Shi L, Zhang Q, Hu Y, Wang N, Ye H. Microarray profiling of circular RNAs in human papillary thyroid carcinoma. PLoS One. 2017;12(3):e0170287. https://doi.org/10.1371/journal.pone.0170287

108

Preca B‐T, Bajdak K, Mock K, Lehmann W, Sundararajan V, Bronsert P, et al. A novel ZEB1/HAS2 positive feedback loop promotes EMT in breast cancer. Oncotarget. 2017;8(7):11530–43. https://doi.org/10.18632/oncotarget.14563

109

Kucuksayan H, Akgun S, Ozes ON, Alikanoglu AS, Yildiz M, Dal E, et al. TGF‐β‐SMAD‐miR‐520e axis regulates NSCLC metastasis through a TGFBR2‐mediated negative‐feedback loop. Carcinogenesis. 2019;40(5):695–705. https://doi.org/10.1093/carcin/bgy166

110

Sakai E, Nakayama M, Oshima H, Kouyama Y, Niida A, Fujii S, et al. Combined mutation of Apc, Kras, and Tgfbr2 effectively drives metastasis of intestinal cancer. Cancer Res. 2018;78(5):1334–46. https://doi.org/10.1158/0008-5472.CAN-17-3303

111

Zhou B, Guo W, Sun C, Zhang B, Zheng F. Linc00462 promotes pancreatic cancer invasiveness through the miR‐665/TGFBR1‐TGFBR2/SMAD2/3 pathway. Cell Death Dis. 2018;9(6):706. https://doi.org/10.1038/s41419-018-0724-5

112

Lyu X, Fang W, Cai L, Zheng H, Ye Y, Zhang L, et al. TGFβR2 is a major target of miR‐93 in nasopharyngeal carcinoma aggressiveness. Mol Cancer. 2014;13:51. https://doi.org/10.1186/1476-4598-13-51

113

Ou R, Lv J, Zhang Q, Lin F, Zhu L, Huang F, et al. circAMOTL1 motivates AMOTL1 expression to facilitate cervical cancer growth. Mol Ther Nucleic Acids. 2020;19:50–60. https://doi.org/10.1016/j.omtn.2019.09.022

114

Su H, Tao T, Yang Z, Kang X, Zhang X, Kang D, et al. Circular RNA cTFRC acts as the sponge of MicroRNA‐107 to promote bladder carcinoma progression. Mol Cancer. 2019;18(1):27. https://doi.org/10.1186/s12943-019-0951-0

115

Zhou J, Zhang S, Chen Z, He Z, Xu Y, Li Z. CircRNA‐ENO1 promoted glycolysis and tumor progression in lung adenocarcinoma through upregulating its host gene ENO1. Cell Death Dis. 2019;10(12):885. https://doi.org/10.1038/s41419-019-2127-7

116

Furth N, Aylon Y. The LATS1 and LATS2 tumor suppressors: beyond the Hippo pathway. Cell Death Differ. 2017;24(9):1488–1501. https://doi.org/10.1038/cdd.2017.99

117

Siegel RL, Miller KD, Jemal A. Cancer statistics 2017. CA Cancer J Clin. 2017;67(1):7–30. https://doi.org/10.3322/caac.21387

118

Fan H, Jiang J, Tang Y, Liang X, Tang Y. CircRNAs: a new chapter in oral squamous cell carcinoma biology. Onco Targets Ther. 2020;13:9071–83. https://doi.org/10.2147/OTT.S263655

119

Li X, Zhang H, Wang Y, Sun S, Shen Y, Yang H. Silencing circular RNA hsa_circ_0004491 promotes metastasis of oral squamous cell carcinoma. Life Sci. 2019;239:116883. https://doi.org/10.1016/j.lfs.2019.116883

120

Gao L, Wang Q‐B, Zhi Y, Ren W‐H, Li S‐M, Zhao C‐Y, et al. Down‐regulation of hsa_circ_0092125 is related to the occurrence and development of oral squamous cell carcinoma. Int J Oral Maxillofac Surg. 2020;49(3):292–7. https://doi.org/10.1016/j.ijom.2019.07.014

121

Li L, Zhang Z‐T. Hsa_circ_0086414 might be a diagnostic biomarker of oral squamous cell carcinoma. Med Sci Monit. 2020;26:e919383. https://doi.org/10.12659/MSM.919383

122

Su W, Wang Y, Wang F, Zhang B, Zhang H, Shen Y, et al. Circular RNA hsa_circ_0007059 indicates prognosis and influences malignant behavior via AKT/mTOR in oral squamous cell carcinoma. J Cell Physiol. 2019;234(9):15156–66. https://doi.org/10.1002/jcp.28156

123

Su W, Sun S, Wang F, Shen Y, Yang H. Circular RNA hsa_circ_0055538 regulates the malignant biological behavior of oral squamous cell carcinoma through the p53/Bcl‐2/caspase signaling pathway. J Transl Med. 2019;17(1):76. https://doi.org/10.1186/s12967-019-1830-6

124

Su W, Wang Y, Wang F, Sun S, Li M, Shen Y, et al. Hsa_circ_0005379 regulates malignant behavior of oral squamous cell carcinoma through the EGFR pathway. BMC Cancer. 2019;19(1):400. https://doi.org/10.1186/s12885-019-5593-5

125

Su W, Wang Y‐F, Wang F, Yang H‐J, Yang H‐Y. Effect of circular RNA hsa_circ_0002203 on the proliferation, migration, invasion, and apoptosis of oral squamous cell carcinoma cells. Hua Xi Kou Qiang Yi Xue Za Zhi. 2019;37(5):509–15. https://doi.org/10.7518/hxkq.2019.05.011

126

Wang F, Wang YF, Su W, Yang HJ, Yang HY. Effect of circular RNA hsa_circ_0063772 on proliferation, migration and invasion of oral squamous cell carcinoma cells. Zhonghua Kou Qiang Yi Xue Za Zhi. 2019;54(8):561–7. https://doi.org/10.3760/cma.j.issn.1002-0098.2019.08.011

127

Deng W, Peng W, Wang T, Chen J, Qiu X, Fu L, et al. Microarray profile of circular RNAs identifies hsa_circRNA_102459 and hsa_circRNA_043621 as important regulators in oral squamous cell carcinoma. Oncol Rep. 2019;42(6):2738–49. https://doi.org/10.3892/or.2019.7369

128

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet‐Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. https://doi.org/10.3322/caac.21262

129

Xu H, Qian M, Zhao B, Wu C, Maskey N, Song H, et al. Inhibition of RAB1A suppresses epithelial‐mesenchymal transition and proliferation of triple‐negative breast cancer cells. Oncol Rep. 2017;37(3):1619–26. https://doi.org/10.3892/or.2017.5404

130

Shao B, He L. Hsa_circ_0001742 promotes tongue squamous cell carcinoma progression via modulating miR‐634 expression. Biochem Biophys Res Commun. 2019;513(1):135–40. https://doi.org/10.1016/j.bbrc.2019.03.122

131

Zhou HX, Wang LY, Chen S, Wang DD, Fang Z. Effect of circular RNA hsa_circ_0008898 on oral squamous cell carcinoma and its mechanism. Zhonghua Kou Qiang Yi Xue Za Zhi. 2020;55(8):578–85. https://doi.org/10.3760/cma.j.cn112144-20200109-00006

132

Hu Y‐T, Li X‐X, Zeng L‐W. Circ_0001742 promotes tongue squamous cell carcinoma progression via miR‐431‐5p/ATF3 axis. Eur Rev Med Pharmacol Sci. 2019;23(23):10300–12. https://doi.org/10.26355/eurrev_201912_19668

133

Zhang C, Yao Y, Bi L. Hsa_circ_0002162 has a critical role in malignant progression of tongue squamous cell carcinoma through targeting miR‐33a‐5p. Braz J Med Biol Res. 2021;54(5):e10093. https://doi.org/10.1590/1414-431X202010093

134

Gao L, Zhao C, Li S, Dou Z, Wang Q, Liu J, et al. circ‐PKD2 inhibits carcinogenesis via the miR‐204‐3p/APC2 axis in oral squamous cell carcinoma. Mol Carcinog. 2019;58(10):1783–94. https://doi.org/10.1002/mc.23065

135

Zhu X, Shao P, Tang Y, Shu M, Hu W‐W, Zhang Y. hsa_circRNA_100533 regulates GNAS by sponging hsa_miR_933 to prevent oral squamous cell carcinoma. JCB. 2019;120(11):19159–71. https://doi.org/10.1002/jcb.29245

136

van Weelden G, Bobiński M, Okła K, van Weelden WJ, Romano A, Pijnenborg JMA. Fucoidan structure and activity in relation to anti‐cancer mechanisms. Mar Drugs. 2019;17(1):32. https://doi.org/10.3390/md17010032

137

Zhang N, Gao L, Ren W, Li S, Zhang D, Song X, et al. Fucoidan affects oral squamous cell carcinoma cell functions in vitro by regulating FLNA‐derived circular RNA. Ann NY Acad Sci. 2020;1462(1):65–78. https://doi.org/10.1111/nyas.14190

138

Kalluri R. The biology and function of exosomes in cancer. J Clin Invest. 2016;126(4):1208–15. https://doi.org/10.1172/JCI81135

139

Luo Y, Liu F, Guo J, Gui R. Upregulation of circ_0000199 in circulating exosomes is associated with survival outcome in OSCC. Sci Rep. 2020;10(1):13739. https://doi.org/10.1038/s41598-020-70747-y

140

Shuai M, Hong J, Huang D, Zhang X, Tian Y. Upregulation of circRNA_0000285 serves as a prognostic biomarker for nasopharyngeal carcinoma and is involved in radiosensitivity. Oncol Lett. 2018;16(5):6495–501. https://doi.org/10.3892/ol.2018.9471

141

Shuai M, Huang L. High expression of hsa_circRNA_001387 in nasopharyngeal carcinoma and the effect on efficacy of radiotherapy. Onco Targets Ther. 2020;13:3965–73. https://doi.org/10.2147/OTT.S249202

142

Liu Q, Shuai M, Xia Y. Knockdown of EBV‐encoded circRNA circRPMS1 suppresses nasopharyngeal carcinoma cell proliferation and metastasis through sponging multiple miRNAs. Cancer Manag Res. 2019;11:8023–31. https://doi.org/10.2147/CMAR.S218967

143

Wei H, Liu D, Sun J, Mao Y, Zhao L, Zhu W, et al. Circular RNA circ_0008450 upregulates CXCL9 expression by targeting miR‐577 to regulate cell proliferation and invasion in nasopharyngeal carcinoma. Exp Mol Pathol. 2019;110:104288. https://doi.org/10.1016/j.yexmp.2019.104288

144

Liu HS, Zheng RN, Guo LB, Fu XJ. Circular RNA circ_0000615 knockdown suppresses the development of nasopharyngeal cancer through regulating the miR‐338‐3p/FGF2 axis. Neoplasma. 2020;67(5):1032–41. https://doi.org/10.4149/neo_2020_191019N1061

145

Li H, You J, Xue H, Tan X, Chao C. CircCTDP1 promotes nasopharyngeal carcinoma progression via a microRNA-320b/HOXA10/TGFβ2 pathway. Int J Mol Med. 2020;45(3):836–46. https://doi.org/10.3892/ijmm.2020.4467

146

Wei Z, Chang K, Fan C. Hsa_circ_0042666 inhibits proliferation and invasion via regulating miR‐223/TGFBR3 axis in laryngeal squamous cell carcinoma. Biomed Pharmacother. 2019;119:109365. https://doi.org/10.1016/j.biopha.2019.109365

147

Wu Y, Zhang Y, Zheng X, Dai F, Lu Y, Dai L, et al. Circular RNA circCORO1C promotes laryngeal squamous cell carcinoma progression by modulating the let‐7c‐5p/PBX3 axis. Mol Cancer. 2020;19(1):99. https://doi.org/10.1186/s12943-020-01215-4.

148

Lamprecht S, Kaller M, Schmidt EM, Blaj C, Schiergens TS, Engel J, et al. PBX3 is part of an EMT regulatory network and indicates poor outcome in colorectal cancer. Clin Cancer Res. 2018;24(8):1974–86. https://doi.org/10.1158/1078-0432.CCR-17-2572

149

Chen X, Su X, Zhu C, Zhou J. Knockdown of hsa_circ_0023028 inhibits cell proliferation, migration, and invasion in laryngeal cancer by sponging miR‐194‐5p. Biosci Rep. 2019;39(6):BSR20190177. https://doi.org/10.1042/BSR20190177

150

Fu D, Huang Y, Gao M. Hsa_circ_0057481 promotes laryngeal cancer proliferation and migration by modulating the miR‐200c/ZEB1 axis. Int J Clin Exp Pathol. 2019;12(11):4066–76.

151

Tian L, Cao J, Jiao H, Zhang J, Ren X, Liu X, et al. CircRASSF2 promotes laryngeal squamous cell carcinoma progression by regulating the miR‐302b‐3p/IGF‐1R axis. Clin Sci (Lond). 2019;133(9):1053–66. https://doi.org/10.1042/CS20190110

152

Yi X, Chen W, Li C, Chen X, Lin Q, Lin S, et al. CircularRNAcirc_0004507 contributes to laryngeal cancer progression and cisplatin resistance by spongingmiR‐873 to upregulate multidrug resistance 1 and multidrug resistance protein 1. Head Neck. 2020;43:928–41. https://doi.org/10.1002/hed.26549.

153

Chen Y, Wang Y, Li C, Li X, Yuan T, Yang S, et al. The circRNA‐MYLK plays oncogenic roles in the Hep‐2 cell line by sponging microRNA‐145‐5p. Gen Physiol Biophys. 2020;39(3):229–37. https://doi.org/10.4149/gpb_2019060

154

Lan X, Cao J, Xu J, Chen C, Zheng C, Wang J, et al. Decreased expression of hsa_circ_0137287 predicts aggressive clinicopathologic characteristics in papillary thyroid carcinoma. J Clin Lab Anal. 2018;32(8):e22573. https://doi.org/10.1002/jcla.22573

155

Wang M, Chen B, Ru Z, Cong L. CircRNA circ‐ITCH suppresses papillary thyroid cancer progression through miR‐22‐3p/CBL/β‐catenin pathway. Biochem Biophys Res Commun. 2018;504(1):283–8. https://doi.org/10.1016/j.bbrc.2018.08.175

156

Chu J, Tao L, Yao T, Chen Z, Lu X, Gao L, et al. Circular RNA circRUNX1 promotes papillary thyroid cancer progression and metastasis by sponging MiR‐296‐3p and regulating DDHD2 expression. Cell Death Dis. 2021;12(1):112. https://doi.org/10.1038/s41419-020-03350-8

157

Yao Y, Chen X, Yang H, Chen W, Qian Y, Yan Z, et al. Hsa_circ_0058124 promotes papillary thyroid cancer tumorigenesis and invasiveness through the NOTCH3/GATAD2A axis. J Exp Clin Cancer Res. 2019;38(1):318. https://doi.org/10.1186/s13046-019-1321-x

158

Liu J, Zheng X, Liu H. Hsa_circ_0102272 serves as a prognostic biomarker and regulates proliferation, migration and apoptosis in thyroid cancer. J Gene Med. 2020;22(9):e3209. https://doi.org/10.1002/jgm.3209

159

Zhang H, Ma X‐P, Li X, Deng F‐S. Circular RNA circ_0067934 exhaustion expedites cell apoptosis and represses cell proliferation, migration and invasion in thyroid cancer via sponging miR‐1304 and regulating CXCR1 expression. Eur Rev Med Pharmacol Sci. 2019;23(24):10851–66. https://doi.org/10.26355/eurrev_201912_19789

160

Wang H, Yan X, Zhang H, Zhan X. CircRNA circ_0067934 overexpression correlates with poor prognosis and promotes thyroid carcinoma progression. Med Sci Monit. 2019;25:1342–9. https://doi.org/10.12659/MSM.913463

161

Yang Y, Ding L, Li Y, Xuan C. Hsa_circ_0039411 promotes tumorigenesis and progression of papillary thyroid cancer by miR‐1179/ABCA9 and miR‐1205/MTA1 signaling pathways. J Cell Physiol. 2020;235(2):1321–9. https://doi.org/10.1002/jcp.29048

162

Zhang W, Zhang H, Zhao X. circ_0005273 promotes thyroid carcinoma progression by SOX2 expression. Endocr Relat Cancer. 2020;27(1):11–21. https://doi.org/10.1530/ERC-19-0381

163

Pan Y, Xu T, Liu Y, Li W, Zhang W. Upregulated circular RNA circ_0025033 promotes papillary thyroid cancer cell proliferation and invasion via sponging miR‐1231 and miR‐1304. Biochem Biophys Res Commun. 2019;510(2):334–8. https://doi.org/10.1016/j.bbrc.2019.01.108

164

Jin X, Wang Z, Pang W, Zhou J, Liang Y, Yang J, et al. Upregulated hsa_circ_0004458 contributes to progression of papillary thyroid carcinoma by inhibition of miR‐885‐5p and activation of RAC1. Med Sci Monit. 2018;24:5488–500. https://doi.org/10.12659/MSM.911095

165

Li Z, Huang X, Liu A, Xu J, Lai J, Guan H, et al. Circ_PSD3 promotes the progression of papillary thyroid carcinoma via the miR‐637/HEMGN axis. Life Sci. 2021;264:118622. https://doi.org/10.1016/j.lfs.2020.118622

166

Zhou G‐K, Zhang G‐Y, Yuan Z‐N, Pei R, Liu D‐M. Has_circ_0008274 promotes cell proliferation and invasion involving AMPK/mTOR signaling pathway in papillary thyroid carcinoma. Eur Rev Med Pharmacol Sci. 2018;22(24):8772–80. https://doi.org/10.26355/eurrev_201812_16644

167

Wei H, Pan L, Tao D, Li R. Circular RNA circZFR contributes to papillary thyroid cancer cell proliferation and invasion by sponging miR‐1261 and facilitating C8orf4 expression. Biochem Biophys Res Commun. 2018;503(1):56–61. https://doi.org/10.1016/j.bbrc.2018.05.174

168

Chen F, Feng Z, Zhu J, Liu P, Yang C, Huang R, et al. Emerging roles of circRNA_NEK6 targeting miR‐370‐3p in the proliferation and invasion of thyroid cancer via Wnt signaling pathway. Cancer Biol Ther. 2018;19(12):1139–52. https://doi.org/10.1080/15384047.2018.1480888

169

Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415–28. https://doi.org/10.1038/nrc2131

170

Cai X, Zhao Z, Dong J, Lv Q, Yun B, Liu J, et al. Circular RNA circBACH2 plays a role in papillary thyroid carcinoma by sponging miR‐139‐5p and regulating LMO4 expression. Cell Death Dis. 2019;10(3):184. https://doi.org/10.1038/s41419-019-1439-y

171

Bi W, Huang J, Nie C, Liu B, He G, Han J, et al. CircRNA circRNA_102171 promotes papillary thyroid cancer progression through modulating CTNNBIP1‐dependent activation of β‐catenin pathway. J Exp Clin Cancer Res. 2018;37(1):275. https://doi.org/10.1186/s13046-018-0936-7

172

Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 2012;7(2):e30733. https://doi.org/10.1371/journal.pone.0030733

173

Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, et al. The landscape of circular RNA in cancer. Cell. 2019;176(4):869–81.e13. https://doi.org/10.1016/j.cell.2018.12.021

174

Patop IL, Kadener S. circRNAs in cancer. Curr Opin Genet Dev. 2018;48:121–7. https://doi.org/10.1016/j.gde.2017.11.007

175

Yin Y, Long J, He Q, Li Y, Liao Y, He P, et al. Emerging roles of circRNA in formation and progression of cancer. J Cancer. 2019;10(21):5015–21. https://doi.org/10.7150/jca.30828

176

Denzler R, McGeary SE, Title AC, Agarwal V, Bartel DP, Stoffel M. Impact of microRNA levels, target‐site complementarity, and cooperativity on competing endogenous RNA‐Regulated gene expression. Mol Cell. 2016;64(3):565–79. https://doi.org/10.1016/j.molcel.2016.09.027

177

Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell. 2014;54(5):766–76. https://doi.org/10.1016/j.molcel.2014.03.045

178

Bosson AD, Zamudio JR, Sharp PA. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol Cell. 2014;56(3):347–59. https://doi.org/10.1016/j.molcel.2014.09.018

179

Nijkamp MM, Span PN, Hoogsteen IJ, van der Kogel AJ, Kaanders JHAM, Bussink J. Expression of E‐cadherin and vimentin correlates with metastasis formation in head and neck squamous cell carcinoma patients. Radiother Oncol. 2011;99(3):344–8. https://doi.org/10.1016/j.radonc.2011.05.066

180

Li X, Tian Y, Hu Y, Yang Z, Zhang L, Luo J. CircNUP214 sponges miR‐145 to promote the expression of ZEB2 in thyroid cancer cells. Biochem Biophys Res Commun. 2018;507(1–4):168–72. https://doi.org/10.1016/j.bbrc.2018.10.200

181

Lindsey S, Langhans SA. Crosstalk of oncogenic signaling pathways during epithelial‐mesenchymal transition. Front Oncol. 2014;4:358. https://doi.org/10.3389/fonc.2014.00358

182

Gonzalez DM, Medici D. Signaling mechanisms of the epithelial‐mesenchymal transition. Sci Signaling. 2014;7(344):re8. https://doi.org/10.1126/scisignal.2005189

183

Massagué J. TGFβ in cancer. Cell. 2008;134(2):215–30. https://doi.org/10.1016/j.cell.2008.07.001

184

Vander Ark A, Cao J, Li X. TGF‐β receptors: in and beyond TGF‐β signaling. Cell Signal. 2018;52:112–20. https://doi.org/10.1016/j.cellsig.2018.09.002

185

Clevers H, Nusse R. Wnt/β‐catenin signaling and disease. Cell. 2012;149(6):1192–205. https://doi.org/10.1016/j.cell.2012.05.012

186

Fang TC, Yashiro‐Ohtani Y, Del Bianco C, Knoblock DM, Blacklow SC, Pear WS. Notch directly regulates Gata3 expression during T helper 2 cell differentiation. Immunity. 2007;27(1):100–10. https://doi.org/10.1016/j.immuni.2007.04.018

187

Malinge S, Thiollier C, Chlon TM, Doré LC, Diebold L, Bluteau O, et al. Ikaros inhibits megakaryopoiesis through functional interaction with GATA‐1 and NOTCH signaling. Blood. 2013;121(13):2440–51. https://doi.org/10.1182/blood-2012-08-450627

188

Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nature Med. 2013;19(11):1423–37. https://doi.org/10.1038/nm.3394

189

Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019;79(18):4557–66. https://doi.org/10.1158/0008-5472.CAN-18-3962

190

Peltanova B, Raudenska M, Masarik M. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review. Mol Cancer. 2019;18(1):63. https://doi.org/10.1186/s12943-019-0983-5

191

Ruiduo C, Ying D, Qiwei W. CXCL9 promotes the progression of diffuse large B‐cell lymphoma through up‐regulating β‐catenin. Biomed Pharmacother. 2018;107:689–95. https://doi.org/10.1016/j.biopha.2018.07.171

192

Tan S, Wang K, Sun F, Li Y, Gao Y. CXCL9 promotes prostate cancer progression through inhibition of cytokines from T cells. Mol Med Rep. 2018;18(2):1305–10. https://doi.org/10.3892/mmr.2018.9152

193

Yuzhalin AE, Lim SY, Kutikhin AG, Gordon‐Weeks AN. Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer. 2018;1870(2):207–28. https://doi.org/10.1016/j.bbcan.2018.09.002

194

Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67. https://doi.org/10.1016/j.cell.2010.03.015

195

Eskens FALM, Ramos FJ, Burger H, O'Brien JP, Piera A, de Jonge MJA, et al. Phase Ⅰ pharmacokinetic and pharmacodynamic study of the first‐in‐class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin Cancer Res. 2013;19(22):6296–304. https://doi.org/10.1158/1078-0432.CCR-13-0485

196

Seiler M, Yoshimi A, Darman R, Chan B, Keaney G, Thomas M, et al. H3B‐8800, an orally available small‐molecule splicing modulator, induces lethality in spliceosome‐mutant cancers. Nature Med. 2018;24(4):497–504. https://doi.org/10.1038/nm.4493

197

Han T, Goralski M, Gaskill N, Capota E, Kim J, Ting TC, et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science. 2017;356(6336):eaal3755. https://doi.org/10.1126/science.aal3755

198

van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, et al. Safety and activity of microRNA‐loaded minicells in patients with recurrent malignant pleural mesothelioma: a first‐in‐man, phase 1, open‐label, dose‐escalation study. Lancet Oncol. 2017;18(10):1386–96. https://doi.org/10.1016/S1470-2045(17)30621-6

199

Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discovery. 2017;16(3):203–22. https://doi.org/10.1038/nrd.2016.246

200

Hanna J, Hossain GS, Kocerha J. The potential for microRNA therapeutics and clinical research. Front Genet. 2019;10:478. https://doi.org/10.3389/fgene.2019.00478

201

He AT, Liu J, Li F, Yang BB. Targeting circular RNAs as a therapeutic approach: current strategies and challenges. Signal Transduct Target Ther. 2021;6(1):185. https://doi.org/10.1038/s41392-021-00569-5

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 20 October 2022
Accepted: 05 December 2022
Published: 19 February 2023
Issue date: December 2023

Copyright

© 2023 The Authors. Tsinghua University Press.

Acknowledgements

ACKNOWLEDGMENTS

None.

Rights and permissions

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Return