Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Phosphorylation is one of the most important post-translational modifications (PTMs) of proteins, governing critical protein functions. Most human proteins have been shown to undergo phosphorylation, and phosphoproteomic studies have been widely applied due to recent advancements in high-resolution mass spectrometry technology. Although the experimental workflow for phosphoproteomics has been well-established, it would be useful to optimize and summarize a detailed, feasible protocol that combines phosphoproteomics and data-independent acquisition (DIA), along with follow-up data analysis procedures due to the recent instrumental and bioinformatic advances in measuring and understanding tens of thousands of site-specific phosphorylation events in a single experiment. Here, we describe an optimized Phos-DIA protocol, from sample preparation to bioinformatic analysis, along with practical considerations and experimental configurations for each step. The protocol is designed to be robust and applicable for both small-scale phosphoproteomic analysis and large-scale quantification of hundreds of samples for studies in systems biology and systems medicine.
Aebersold R, Agar JN, Amster IJ, Baker MS, Bertozzi CR, Boja ES, Costello CE, Cravatt BF, Fenselau C, Garcia BA (2018) How many human proteoforms are there? Nat Chem Biol 14(3): 206-214
Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537(7620): 347−355
Ba Q, Hei Y, Dighe A, Li W, Maziarz J, Pak I, Wang S, Wagner GP, Liu Y (2022) Proteotype coevolution and quantitative diversity across 11 mammalian species. Sci Adv 8(36): eabn0756. https://doi.org/10.1126/sciadv.abn0756
Bekker-Jensen DB, Bernhardt OM, Hogrebe A, Martinez-Val A, Verbeke L, Gandhi T, Kelstrup CD, Reiter L, Olsen JV (2020) Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries. Nat Commun 11(1): 787. https://doi.org/10.1038/s41467-020-14609-1
Betts MJ, Wichmann O, Utz M, Andre T, Petsalaki E, Minguez P, Parca L, Roth FP, Gavin A-C, Bork P (2017) Systematic identification of phosphorylation-mediated protein interaction switches. PLoS Comput Biol 13(3): e1005462. https://doi.org/10.1371/journal.pcbi.1005462
Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411(6835): 355−365
Bruderer R, Bernhardt OM, Gandhi T, Miladinovic SM, Cheng LY, Messner S, Ehrenberger T, Zanotelli V, Butscheid Y, Escher C, Vitek O, Rinner O, Reiter L (2015) Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics 14(5): 1400−1410
Bruderer R, Bernhardt OM, Gandhi T, Xuan Y, Sondermann J, Schmidt M, Gomez-Varela D, Reiter L (2017) Optimization of experimental parameters in data-independent mass spectrometry significantly increases depth and reproducibility of results. Mol Cell Proteomics 16(12): 2296−2309
Bruderer R, Muntel J, Muller S, Bernhardt OM, Gandhi T, Cominetti O, Macron C, Carayol J, Rinner O, Astrup A, Saris WHM, Hager J, Valsesia A, Dayon L, Reiter L (2019) Analysis of 1508 plasma samples by capillary-flow data-independent acquisition profiles proteomics of weight loss and maintenance. Mol Cell Proteomics 18(6): 1242−1254
Cohen P (2002) The origins of protein phosphorylation. Nat Cell Biol 4(5): E127−E130
Collins BC, Hunter CL, Liu Y, Schilling B, Rosenberger G, Bader SL, Chan DW, Gibson BW, Gingras AC, Held JM, Hirayama-Kurogi M, Hou G, Krisp C, Larsen B, Lin L, Liu S, Molloy MP, Moritz RL, Ohtsuki S, Schlapbach R, Selevsek N, Thomas SN, Tzeng SC, Zhang H, Aebersold R (2017) Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat Commun 8(1): 291. https://doi.org/10.1038/s41467-017-00249-5
Conesa A, Nueda MJ, Ferrer A, Talon M (2006) maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics 22(9): 1096−1102
Cox J, Mann M (2012) 1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data. BMC Bioinformatics 13(Suppl 16): S12. https://doi.org/10.1186/1471-2105-13-S16-S12
Demichev V, Messner CB, Vernardis SI, Lilley KS, Ralser M (2020) DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods 17(1): 41−44
Egertson JD, Kuehn A, Merrihew GE, Bateman NW, MacLean BX, Ting YS, Canterbury JD, Marsh DM, Kellmann M, Zabrouskov V, Wu CC, MacCoss MJ (2013) Multiplexed MS/MS for improved data-independent acquisition. Nat Methods 10(8): 744−746
Eidenmüller J, Fath T, Maas T, Pool M, Sontag E, Brandt R (2001) Phosphorylation-mimicking glutamate clusters in the proline-rich region are sufficient to simulate the functional deficiencies of hyperphosphorylated tau protein. Biochem J 357(3): 759−767
Gao E, Li W, Wu C, Shao W, Di Y, Liu Y (2021) Data-independent acquisition-based proteome and phosphoproteome profiling across six melanoma cell lines reveals determinants of proteotypes. Mol Omics 17(3): 413−425
Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(6): O111.016717. https://doi.org/10.1074/mcp.O111.016717
Gjerga E, Dugourd A, Tobalina L, Sousa A, Saez-Rodriguez J (2021) PHONEMeS: efficient modeling of signaling networks derived from large-scale mass spectrometry data. J Proteome Res 20(4): 2138−2144
Grundke-Iqbal I, Iqbal K, Tung Y-C, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83(13): 4913−4917
Hoffman NJ, Parker BL, Chaudhuri R, Fisher-Wellman KH, Kleinert M, Humphrey SJ, Yang P, Holliday M, Trefely S, Fazakerley DJ (2015) Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab 22(5): 922−935
Hornbeck PV, Kornhauser JM, Latham V, Murray B, Nandhikonda V, Nord A, Skrzypek E, Wheeler T, Zhang B, Gnad F (2019) 15 years of PhosphoSitePlus(R): integrating post-translationally modified sites, disease variants and isoforms. Nucleic Acids Res 47(D1): D433−D441
Huang JX, Lee G, Cavanaugh KE, Chang JW, Gardel ML, Moellering RE (2019) High throughput discovery of functional protein modifications by Hotspot Thermal Profiling. Nat Methods 16(9): 894−901
Humphrey SJ, James DE, Mann M (2015) Protein phosphorylation: a major switch mechanism for metabolic regulation. Trends Endocrin Metab 26(12): 676−687
Jensen ON (2004) Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol 8(1): 33−41
Jovanovic M, Rooney MS, Mertins P, Przybylski D, Chevrier N, Satija R, Rodriguez EH, Fields AP, Schwartz S, Raychowdhury R (2015) Dynamic profiling of the protein life cycle in response to pathogens. Science 347(6226): 1259038. https://doi.org/10.1126/science.1259038
Kim HJ, Kim T, Hoffman NJ, Xiao D, James DE, Humphrey SJ, Yang P (2021) PhosR enables processing and functional analysis of phosphoproteomic data. Cell Rep 34(8): 108771. https://doi.org/10.1016/j.celrep.2021.108771
Krahmer N, Najafi B, Schueder F, Quagliarini F, Steger M, Seitz S, Kasper R, Salinas F, Cox J, Uhlenhaut NH (2018) Organellar proteomics and phospho-proteomics reveal subcellular reorganization in diet-induced hepatic steatosis. Dev Cell 47(2): 205−221.e7
Krug K, Mertins P, Zhang B, Hornbeck P, Raju R, Ahmad R, Szucs M, Mundt F, Forestier D, Jane-Valbuena J, Keshishian H, Gillette MA, Tamayo P, Mesirov JP, Jaffe JD, Carr S, Mani DR (2019) A curated resource for phosphosite-specific signature analysis. Mol Cell Proteomics 18(3): 576−593
Lawrence RT, Searle BC, Llovet A, Villén J (2016) Plug-and-play analysis of the human phosphoproteome by targeted high-resolution mass spectrometry. Nat Methods 13(5): 431−434
Li W, Salovska B, Fornasiero EF, Liu Y (2022) Toward a hypothesis-free understanding of how phosphorylation dynamically impacts protein turnover. Proteomics ; 23(3-4): e2100387. https://doi.org/10.1002/pmic.202100387
Liu Y (2022) A peptidoform based proteomic strategy for studying functions of post-translational modifications. Proteomics 22(4): e2100316. https://doi.org/10.1002/pmic.202100316
Liu Y, Beyer A, Aebersold R (2016) On the dependency of cellular protein levels on mRNA abundance. Cell 165(3): 535−550
Liu Y, Buil A, Collins BC, Gillet LC, Blum LC, Cheng LY, Vitek O, Mouritsen J, Lachance G, Spector TD, Dermitzakis ET, Aebersold R (2015) Quantitative variability of 342 plasma proteins in a human twin population. Mol Syst Biol 11: 786. https://doi.org/10.15252/msb.20145728
Liu Y, Mi Y, Mueller T, Kreibich S, Williams EG, Van Drogen A, Borel C, Frank M, Germain PL, Bludau I, Mehnert M, Seifert M, Emmenlauer M, Sorg I, Bezrukov F, Bena FS, Zhou H, Dehio C, Testa G, Saez-Rodriguez J, Antonarakis SE, Hardt WD, Aebersold R (2019) Multi-omic measurements of heterogeneity in HeLa cells across laboratories. Nat Biotechnol 37(3): 314−322
Low TY, Mohtar MA, Lee PY, Omar N, Zhou H, Ye M (2021) Widening the bottleneck of phosphoproteomics: evolving strategies for phosphopeptide enrichment. Mass Spectrom Rev 40(4): 309−333
Meier F, Geyer PE, Virreira Winter S, Cox J, Mann M (2018) BoxCar acquisition method enables single-shot proteomics at a depth of 10, 000 proteins in 100 minutes. Nat Methods 15(6): 440−448
Needham EJ, Parker BL, Burykin T, James DE, Humphrey SJ (2019) Illuminating the dark phosphoproteome. Science signaling 12(565): eaau8645. https://doi.org/10.1126/scisignal.aau8645
Ochoa D, Jarnuczak AF, Vieitez C, Gehre M, Soucheray M, Mateus A, Kleefeldt AA, Hill A, Garcia-Alonso L, Stein F, Krogan NJ, Savitski MM, Swaney DL, Vizcaino JA, Noh KM, Beltrao P (2020) The functional landscape of the human phosphoproteome. Nat Biotechnol 38(3): 365−373
Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3): 635−648
Peckner R, Myers SA, Jacome ASV, Egertson JD, Abelin JG, MacCoss MJ, Carr SA, Jaffe JD (2018) Specter: linear deconvolution for targeted analysis of data-independent acquisition mass spectrometry proteomics. Nat Methods 15(5): 371−378
Potel CM, Lin M-H, Heck AJ, Lemeer S (2018) Widespread bacterial protein histidine phosphorylation revealed by mass spectrometry-based proteomics. Nat Methods 15(3): 187−190
Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li Y (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131(6): 1190−1203
Rosenberger G, Liu Y, Rost HL, Ludwig C, Buil A, Bensimon A, Soste M, Spector TD, Dermitzakis ET, Collins BC, Malmstrom L, Aebersold R (2017) Inference and quantification of peptidoforms in large sample cohorts by SWATH-MS. Nat Biotechnol 35(8): 781−788
Salovska B, Gao E, Müller‐Dott S, Li W, Cordon CC, Wang S, Dugourd A, Rosenberger G, Saez‐Rodriguez J, Liu Y (2023) Phosphoproteomic analysis of metformin signaling in colorectal cancer cells elucidates mechanism of action and potential therapeutic opportunities. Clin Trans Med 13(2): e1179. https://doi.org/10.1002/ctm2.1179
Salovska B, Li W, Di Y, Liu Y (2021) BoxCarmax: A high-selectivity data-independent acquisition mass spectrometry method for the analysis of protein turnover and complex samples. Anal Chem 93(6): 3103−3111
Salovska B, Zhu H, Gandhi T, Frank M, Li W, Rosenberger G, Wu C, Germain PL, Zhou H, Hodny Z, Reiter L, Liu Y (2020) Isoform-resolved correlation analysis between mRNA abundance regulation and protein level degradation. Mol Syst Biol 16(3): e9170. https://doi.org/10.15252/msb.20199170
Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473(7347): 337−342
Tsou C-C, Avtonomov D, Larsen B, Tucholska M, Choi H, Gingras A-C, Nesvizhskii AI (2015) DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat Methods 12(3): 258−264
Türei D, Korcsmáros T, Saez-Rodriguez J (2016) OmniPath: guidelines and gateway for literature-curated signaling pathway resources. Nat Methods 13(12): 966−967
Türei D, Valdeolivas A, Gul L, Palacio-Escat N, Klein M, Ivanova O, Ölbei M, Gábor A, Theis F, Módos D, Korcsmáros T, Saez-Rodriguez J (2021) Integrated intra- and intercellular signaling knowledge for multicellular omics analysis. Mol Syst Biol 17(3): e9923. https://doi.org/10.15252/msb.20209923
Tyanova S, Cox J (2018) Perseus: A Bioinformatics Platform for Integrative Analysis of Proteomics Data in Cancer Research. Methods Mol Biol 1711: 133−148
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9): 731−740
Venable JD, Dong MQ, Wohlschlegel J, Dillin A, Yates JR (2004) Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat Methods 1(1): 39−45
Wang S, Cai Y, Cheng J, Li W, Liu Y, Yang H (2019) MotifeR: an integrated web software for identification and visualization of protein posttranslational modification motifs. Proteomics 19(23): 1900245. https://doi.org/10.1002/pmic.201900245
Wang S, Li W, Hu L, Cheng J, Yang H, Liu Y (2020) NAguideR: performing and prioritizing missing value imputations for consistent bottom-up proteomic analyses. Nucleic Acids Res 48(14): e83. https://doi.org/10.1093/nar/gkaa498
Wu C, Ba Q, Lu D, Li W, Salovska B, Hou P, Mueller T, Rosenberger G, Gao E, Di Y, Zhou H, Fornasiero EF, Liu Y (2021) Global and site-specific effect of phosphorylation on protein turnover. Dev Cell 56(1): 111−124.e116
Xiao D, Chen C, Yang P (2022) Computational systems approach towards phosphoproteomics and their downstream regulation. Proteomics 23(3-4): e2200068. https://doi.org/10.1002/pmic.202200068
Yang P, Zheng X, Jayaswal V, Hu G, Yang JY, Jothi R (2015) Knowledge-based analysis for detecting key signaling events from time-series phosphoproteomics data. PLoS Comput Biol 11(8): e1004403. https://doi.org/10.1371/journal.pcbi.1004403
Yang Y, Cheng J, Wang S, Yang H (2022) StatsPro: systematic integration and evaluation of statistical approaches for detecting differential expression in label-free quantitative proteomics. J Proteomics 250: 104386. https://doi.org/10.1016/j.jprot.2021.104386
Zanivan S, Meves A, Behrendt K, Schoof EM, Neilson LJ, Cox J, Tang HR, Kalna G, van Ree JH, van Deursen JM (2013) In vivo SILAC-based proteomics reveals phosphoproteome changes during mouse skin carcinogenesis. Cell Rep 3(2): 552−566
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.