Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Transient and weak protein–protein interactions are essential to many biochemical reactions, yet are technically challenging to study. Chemical cross-linking of proteins coupled with mass spectrometry analysis (CXMS) provides a powerful tool in the analysis of such interactions. Central to this technology are chemical cross-linkers. Here, using two transient heterodimeric complexes EIN/HPr and EIIAGlc/EIIBGlc as our model systems, we evaluated the effects of two amine-specific homo-bifunctional cross-linkers with different reactivities. We showed previously that DOPA2 (di-ortho-phthalaldehyde with a di-ethylene glycol spacer arm) cross-links proteins 60–120 times faster than DSS (disuccinimidyl suberate). We found that though most of the intermolecular cross-links of either cross-linker are consistent with the encounter complexes (ECs), an ensemble of short-lived binding intermediates, more DOPA2 intermolecular cross-links could be assigned to the stereospecific complex (SC), the final lowest-energy conformational state for the two interacting proteins. Our finding suggests that faster cross-linking captures the SC more effectively and cross-linkers of different reactivities potentially probe protein–protein interaction dynamics across multiple timescales.
Acuner Ozbabacan SE, Engin HB, Gursoy A, Keskin O (2011) Transient protein-protein interactions. Protein Eng Des Sel 24(9): 635−648
Anthis NJ, Clore GM (2015) Visualizing transient dark states by NMR spectroscopy. Q Rev Biophys 48(1): 35−116
Belsom A, Rappsilber J (2021) Anatomy of a crosslinker. Curr Opin Chem Biol 60: 39−46
Berggard T, Linse S, James P (2007) Methods for the detection and analysis of protein-protein interactions. Proteomics 7(16): 2833−2842
Cai M, Williams DC, Jr., Wang G, Lee BR, Peterkofsky A, Clore GM (2003) Solution structure of the phosphoryl transfer complex between the signal-transducing protein IIAGlucose and the cytoplasmic domain of the glucose transporter IICBGlucose of the Escherichia coli glucose phosphotransferase system. J Biol Chem 278(27): 25191−25206
Chavez JD, Bruce JE (2019) Chemical cross-linking with mass spectrometry: a tool for systems structural biology. Curr Opin Chem Biol 48: 8−18
Chen ZL, Meng JM, Cao Y, Yin JL, Fang RQ, Fan SB, Liu C, Zeng WF, Ding YH, Tan D, Wu L, Zhou WJ, Chi H, Sun RX, Dong MQ, He SM (2019) A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides. Nat Commun 10(1): 3404. https://doi.org/10.1038/s41467-019-11337-z
Combe CW, Fischer L, Rappsilber J (2015) xiNET: cross-link network maps with residue resolution. Mol Cell Proteomics 14(4): 1137−1147
Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70(4): 939−1031
Ding YH, Fan SB, Li S, Feng BY, Gao N, Ye K, He SM, Dong MQ (2016) Increasing the depth of mass-spectrometry-based structural analysis of protein complexes through the use of multiple cross-Linkers. Anal Chem 88(8): 4461−4469
Dong X, Qin LY, Gong Z, Qin S, Zhou HX, Tang C (2022) Preferential interactions of a crowder protein with the specific binding site of a native protein complex. J Phys Chem Lett 13(3): 792−800
Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, Ji XL, Liu SQ (2016) Insights into protein-ligand interactions: mechanisms, models, and methods. Int J Mol Sci 17(2): 144. https://doi.org/10.3390/ijms17020144
Fan SB, Wu YJ, Yang B, Chi H, Meng JM, Lu S, Zhang K, Wu L, Sun RX, Dong MQ, He SM (2014) A new approach to protein structure and interaction research: chemical cross-linking in combination with mass spectrometry. Prog Biochem Biophys 41(11): 1109−1125
Fawzi NL, Doucleff M, Suh JY, Clore GM (2010) Mechanistic details of a protein-protein association pathway revealed by paramagnetic relaxation enhancement titration measurements. Proc Natl Acad Sci USA 107(4): 1379−1384
Garrett DS, Seok YJ, Peterkofsky A, Clore GM, Gronenborn AM (1997) Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system. Biochemistry 36(15): 4393−4398
Garrett DS, Seok YJ, Peterkofsky A, Gronenborn AM, Clore GM (1999) Solution structure of the 40,000 Mr phosphoryl transfer complex between the N-terminal domain of enzyme I and HPr. Nat Struct Biol 6(2): 166−173
Gong Z, Ding YH, Dong X, Liu N, Zhang EE, Dong MQ, Tang C (2015) Visualizing the ensemble structures of protein complexes using chemical cross-linking coupled with mass spectrometry. Biophys Rep 1: 127−138
Gong Z, Ye SX, Nie ZF, Tang C (2020) The conformational preference of chemical cross-linkers determines the cross-linking probability of reactive protein residues. J Phys Chem B 124(22): 4446−4453
Herzog F, Kahraman A, Boehringer D, Mak R, Bracher A, Walzthoeni T, Leitner A, Beck M, Hartl FU, Ban N, Malmstrom L, Aebersold R (2012) Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry. Science 337(6100): 1348−1352
Hofmann T, Fischer AW, Meiler J, Kalkhof S (2015) Protein structure prediction guided by crosslinking restraints-a systematic evaluation of the impact of the crosslinking spacer length. Methods 89: 79−90
Kastner B, Fischer N, Golas MM, Sander B, Dube P, Boehringer D, Hartmuth K, Deckert J, Hauer F, Wolf E, Uchtenhagen H, Urlaub H, Herzog F, Peters JM, Poerschke D, Luhrmann R, Stark H (2008) GraFix: sample preparation for single-particle electron cryomicroscopy. Nat Methods 5(1): 53−55
Kotrba P, Inui M, Yukawa H (2001) Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J Biosci Bioeng 92(6): 502−517
Kozakov D, Li K, Hall DR, Beglov D, Zheng J, Vakili P, Schueler-Furman O, Paschalidis I, Clore GM, Vajda S (2014) Encounter complexes and dimensionality reduction in protein-protein association. Elife 3: e01370. https://doi.org/10.7554/eLife.01370
La D, Kong M, Hoffman W, Choi YI, Kihara D (2013) Predicting permanent and transient protein-protein interfaces. Proteins 81(5): 805−818
Liu F, Heck AJ (2015) Interrogating the architecture of protein assemblies and protein interaction networks by cross-linking mass spectrometry. Curr Opin Struct Biol 35: 100−108
Liu Z, Gong Z, Dong X, Tang C (2016) Transient protein-protein interactions visualized by solution NMR. Biochim Biophys Acta 1864(1): 115−122
Lv L, Chen P, Cao L, Li Y, Zeng Z, Cui Y, Wu Q, Li J, Wang JH, Dong MQ, Qi X, Han T (2020) Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger cyclin K degradation. Elife 9: e59994. https://doi.org/10.7554/eLife.59994
Matthew Allen Bullock J, Schwab J, Thalassinos K, Topf M (2016) The importance of non-accessible crosslinks and solvent accessible surface distance in modeling proteins with restraints from crosslinking mass spectrometry. Mol Cell Proteomics 15(7): 2491−2500
O'Reilly FJ, Rappsilber J (2018) Cross-linking mass spectrometry: methods and applications in structural, molecular and systems biology. Nat Struct Mol Biol 25(11): 1000−1008
Perkins JR, Diboun I, Dessailly BH, Lees JG, Orengo C (2010) Transient protein-protein interactions: structural, functional, and network properties. Structure 18(10): 1233−1243
Qin J, Gronenborn AM (2014) Weak protein complexes: challenging to study but essential for life. FEBS J 281(8): 1948−1949
Reizer J, Sutrina SL, Wu LF, Deutscher J, Reddy P, Saier MH, Jr. (1992) Functional interactions between proteins of the phosphoenolpyruvate: sugar phosphotransferase systems of Bacillus subtilis and Escherichia coli. J Biol Chem 267(13): 9158−9169
Schilder J, Ubbink M (2013) Formation of transient protein complexes. Curr Opin Struct Biol 23(6): 911−918
Shi Y, Pellarin R, Fridy PC, Fernandez-Martinez J, Thompson MK, Li Y, Wang QJ, Sali A, Rout MP, Chait BT (2015) A strategy for dissecting the architectures of native macromolecular assemblies. Nat Methods 12(12): 1135−1138
Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705): 1315−1317
Suh JY, Tang C, Clore GM (2007) Role of electrostatic interactions in transient encounter complexes in protein-protein association investigated by paramagnetic relaxation enhancement. J Am Chem Soc 129(43): 12954−12955
Tang C, Gong Z (2020) Integrating non-NMR distance restraints to augment NMR depiction of protein structure and dynamics. J Mol Biol 432(9): 2913−2929
Tang C, Iwahara J, Clore GM (2006) Visualization of transient encounter complexes in protein-protein association. Nature 444(7117): 383−386
Vaynberg J, Qin J (2006) Weak protein-protein interactions as probed by NMR spectroscopy. Trends Biotechnol 24(1): 22−27
Wang JH, Tang YL, Gong Z, Jain R, Xiao F, Zhou Y, Tan D, Li Q, Huang N, Liu SQ, Ye K, Tang C, Dong MQ, Lei X (2022) Characterization of protein unfolding by fast cross-linking mass spectrometry using di-ortho-phthalaldehyde cross-linkers. Nat Commun 13(1): 1468. https://doi.org/10.1038/s41467-022-28879-4
Wheat A, Yu C, Wang X, Burke AM, Chemmama IE, Kaake RM, Baker P, Rychnovsky SD, Yang J, Huang L (2021) Protein interaction landscapes revealed by advanced in vivo cross-linking-mass spectrometry. Proc Natl Acad Sci USA 118(32): e2023360118. https://doi.org/10.1073/pnas.2023360118
Wu S, Tan D, Woolford JL, Jr., Dong MQ, Gao N (2017) Atomic modeling of the ITS2 ribosome assembly subcomplex from cryo-EM together with mass spectrometry-identified protein-protein crosslinks. Protein Sci 26(1): 103−112
Xing Q, Huang P, Yang J, Sun JQ, Gong Z, Dong X, Guo DC, Chen SM, Yang YH, Wang Y, Yang MH, Yi M, Ding YM, Liu ML, Zhang WP, Tang C (2014) Visualizing an ultra-weak protein-protein interaction in phosphorylation signaling. Angew Chem Int Ed Engl 53(43): 11501−11505
Yang B, Wu H, Schnier PD, Liu Y, Liu J, Wang N, DeGrado WF, Wang L (2018) Proximity-enhanced SuFEx chemical cross-linker for specific and multitargeting cross-linking mass spectrometry. Proc Natl Acad Sci USA 115(44): 11162−11167
Yang B, Wu YJ, Zhu M, Fan SB, Lin J, Zhang K, Li S, Chi H, Li YX, Chen HF, Luo SK, Ding YH, Wang LH, Hao Z, Xiu LY, Chen S, Ye K, He SM, Dong MQ (2012) Identification of cross-linked peptides from complex samples. Nat Methods 9(9): 904−906
Yu C, Huang L (2018) Cross-linking mass spectrometry: an emerging technology for interactomics and structural biology. Anal Chem 90(1): 144−165
Yu C, Novitsky EJ, Cheng NW, Rychnovsky SD, Huang L (2020) Exploring spacer arm structures for designs of asymmetric sulfoxide-containing MS-cleavable cross-Linkers. Anal Chem 92(8): 6026−6033
Zhao K, Cheng S, Miao N, Xu P, Lu X, Zhang Y, Wang M, Ouyang X, Yuan X, Liu W, Lu X, Zhou P, Gu J, Zhang Y, Qiu D, Jin Z, Su C, Peng C, Wang JH, Dong MQ, Wan Y, Ma J, Cheng H, Huang Y, Yu Y (2019) A Pandas complex adapted for piRNA-guided transcriptional silencing and heterochromatin formation. Nat Cell Biol 21(10): 1261−1272
Zhao Q, Zhou H, Chi S, Wang Y, Wang J, Geng J, Wu K, Liu W, Zhang T, Dong MQ, Wang J, Li X, Xiao B (2018) Structure and mechanogating mechanism of the Piezo1 channel. Nature 554(7693): 487−492
Ziemianowicz DS, Ng D, Schryvers AB, Schriemer DC (2019) Photo-cross-linking mass spectrometry and integrative modeling enables rapid screening of antigen interactions involving bacterial transferrin receptors. J Proteome Res 18(3): 934−946
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.