AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Spatial transcriptomics: new dimension of understanding biological complexity

Zhuxia Li1,4Guangdun Peng1,2,3( )
Ceter for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

Abstract

Cells and tissues are exquisitely organized in a complex but ordered manner to form organs and bodies so that individuals can function properly. The spatial organization and tissue architecture represent a keynote property underneath all living organisms. Molecular architecture and cellular composition within intact tissues play a vital role in a variety of biological processes, such as forming the complicated tissue functionality, precise regulation of cell transition in all living activities, consolidation of central nervous system, cellular responses to immunological and pathological cues. To explore these biological events at a large scale and fine resolution, a genome-wide understanding of spatial cellular changes is essential. However, previous bulk RNA sequencing and single-cell RNA sequencing technologies could not obtain the important spatial information of tissues and cells, despite their ability to detect high content transcriptional changes. These limitations have prompted the development of numerous spatially resolved technologies which provide a new dimension to interrogate the regional gene expression, cellular microenvironment, anatomical heterogeneity and cell-cell interactions. Since the advent of spatial transcriptomics, related works that use these technologies have increased rapidly, and new methods with higher throughput and resolution have grown quickly, all of which hold great promise to accelerate new discoveries in understanding the biological complexity. In this review, we briefly discussed the historical evolution of spatially resolved transcriptome. We broadly surveyed the representative methods. Furthermore, we summarized the general computational analysis pipeline for the spatial gene expression data. Finally, we proposed perspectives for technological development of spatial multi-omics.

References

 

Alturkistani HA, Tashkandi FM, Mohammedsaleh ZM (2015) Histological stains: a literature review and case study. Glob J Health Sci 8(3): 72−79

 

Bandyopadhyay U, Fenton WA, Horwich AL, Nagy M (2014) Production of RNA for transcriptomic analysis from mouse spinal cord motor neuron cell bodies by laser capture microdissection. J Vis Exp 83: e51168. https://doi.org/10.3791/51168

 

Battich N, Stoeger T, Pelkmans L (2013) Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat Methods 10(11): 1127−1133

 

Beliveau BJ, Joyce EF, Apostolopoulos N, Yilmaz F, Fonseka CY, McCole RB, Chang Y, Li JB, Senaratne TN, Williams BR, Rouillard JM, Wu CT (2012) Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc Natl Acad Sci USA 109(52): 21301−21306

 
Brown VM, Ossadtchi A, Khan AH, Cherry SR, Leahy RM, Smith DJ (2002) High-throughput imaging of brain gene expression. Genome Res 12: 244-254
 

Cabili MN, Dunagin MC, McClanahan PD, Biaesch A, Padovan-Merhar O, Regev A, Rinn JL, Raj A (2015) Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol 16(1): 20. https://doi.org/10.1186/s13059-015-0586-4

 
Cable DM, Murray E, Zou LS, Goeva A, Macosko EZ, Chen F, Irizarry RA (2021) Robust decomposition of cell type mixtures in spatial transcriptomics. Nat Biotechnol. https://doi.org/10.1038/s41587-021-00830-w
 
Chen A, Liao S, Cheng M, Ma K, Wu L, Lai Y, Yang J, Li W, Xu J, Hao S, Lu H, Chen X, Liu X, Huang X, Lin F, Tang X, Li Z, Hong Y, Fu D, Jiang Y, Peng J, Liu S, Shen M, Liu C, Li Q, Wang Z, Wang Z, Huang X, Yuan Y, Volpe G, Ward C, Muñoz-Cánoves P, Thiery JP, Zhao F, Li M, Kuang H, Wang O, Lu H, Wang B, Ni M, Zhang W, Mu F, Yin Y, Yang H, Lisby M, Cornall RJ, Uhlen M, Esteban MA, Li Y, Liu L, Xu X, Wang J (2021) Large field of view-spatially resolved transcriptomics at nanoscale resolution. bioRxiv. https://doi.org/10.1101/2021.01.17.427004
 
Chen H, Murray E, Laumas A, Li J, Nie X, Hotaling J, Guo J, Cairns BR, Macosko EZ, Cheng CY, Chen F (2020) Dissecting mammalian spermatogenesis using spatial transcriptomics. bioRxiv. https://doi.org/10.1101/2020.10.17.343335
 

Chen J, Suo S, Tam PP, Han JJ, Peng G, Jing N (2017) Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat Protoc 12(3): 566−580

 

Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X (2015) RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348(6233): aaa6090. https://doi.org/10.1126/science.aaa6090

 

Chen X, Sun YC, Zhan H, Kebschull JM, Fischer S, Matho K, Huang ZJ, Gillis J, Zador AM (2019) High-Throughput mapping of long-range neuronal projection using in situ sequencing. Cell 179(3): 772−786

 

Cho CS, Xi J, Si Y, Park SR, Hsu JE, Kim M, Jun G, Kang HM, Lee JH (2021) Microscopic examination of spatial transcriptome using Seq-Scope. Cell 184(13): 3559−3572

 

Codeluppi S, Borm LE, Zeisel A, La Manno G, van Lunteren JA, Svensson CI, Linnarsson S (2018) Spatial organization of the somatosensory cortex revealed by osmFISH. Nat Methods 15(11): 932−935

 

Datta S, Malhotra L, Dickerson R, Chaffee S, Sen CK, Roy S (2015) Laser capture microdissection: big data from small samples. Histol Histopathol 30(11): 1255−1269

 
Deng Y, Bartosovic M, Ma S, Zhang D, Liu Y, Qin X, Su G, Xu ML, Halene S, Craft JE, Castelo-Branco G, Fan R (2021a) Spatial-ATAC-seq: spatially resolved chromatin accessibility profiling of tissues at genome scale and cellular level. bioRxiv. https://doi.org/10.1101/2021.06.06.447244
 
Deng Y, Zhang D, Liu Y, Su G, Enninful A, Bai Z, Fan R (2021b) Spatial epigenome sequencing at tissue scale and cellular level. bioRxiv. https://doi.org/10.1101/2021.03.11.434985
 
Dou J, Liang S, Mohanty V, Cheng X, Kim S, Choi J, Li Y, Rezvani K, Chen R, Chen K (2020) Unbiased integration of single cell multi-omics data. bioRxiv. https://doi.org/10.1101/2020.12.11.422014
 

Dries R, Zhu Q, Dong R, Linus Eng C-H, Li H, Liu K, Fu Y, Zhao T, Sarkar A, Bao F, George RE, Pierson N, Cai L, Yuan G-C (2021) Giotto, a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol : 22(1): 78. https://doi.org/10.1186/s13059-021-02286-2

 

Elosua-Bayes M, Nieto P, Mereu E, Gut I, Heyn H (2021) SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res 49: e50. https://doi.org/10.1093/nar/gkab043

 

Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. science 274(5289): 998−1001

 

Femino AM, Fay SF, Fogarty K, Singer RH (1998) Visualization of single RNA transcripts in situ. science 280(5363): 585−590

 

Francoz E, Ranocha P, Pernot C, Le Ru A, Pacquit V, Dunand C, Burlat V (2016) Complementarity of medium-throughput in situ RNA hybridization and tissue-specific transcriptomics: case study of Arabidopsis seed development kinetics. Sci Rep 6: 24644. https://doi.org/10.1038/srep24644

 

Hou X, Yang Y, Li P, Zeng Z, Hu W, Zhe R, Liu X, Tang D, Ou M, Dai Y (2021) Integrating spatial transcriptomics and single-cell RNA-seq reveals the gene expression profling of the human embryonic liver. Front Cell Dev Biol 9: 652408. https://doi.org/10.3389/fcell.2021.652408

 

Hu J, Schroeder A, Coleman K, Chen C, Auerbach BJ, Li M (2021) Statistical and machine learning methods for spatially resolved transcriptomics with histology. Comput Struct Biotechnol J 19: 3829−3841

 

Hu KH, Eichorst JP, McGinnis CS, Patterson DM, Chow ED, Kersten K, Jameson SC, Gartner ZJ, Rao AA, Krummel MF (2020) ZipSeq: barcoding for real-time mapping of single cell transcriptomes. Nat Methods 17: 833−843

 

Jemt A, Salmen F, Lundmark A, Mollbrink A, Fernandez Navarro J, Stahl PL, Yucel-Lindberg T, Lundeberg J (2016) An automated approach to prepare tissue-derived spatially barcoded RNA-sequencing libraries. Sci Rep 6: 37137. https://doi.org/10.1038/srep37137

 

Junker JP, Noel ES, Guryev V, Peterson KA, Shah G, Huisken J, McMahon AP, Berezikov E, Bakkers J, van Oudenaarden A (2014) Genome-wide RNA tomography in the zebrafish embryo. Cell 159(3): 662−675

 

Ke R, Mignardi M, Pacureanu A, Svedlund J, Botling J, Wahlby C, Nilsson M (2013) In situ sequencing for RNA analysis in preserved tissue and cells. Nat Methods 10(9): 857−860

 
Kueckelhaus J, von Ehr J, Ravi VM, Will P, Joseph K, Beck J, Hofmann UG, Delev D, Schnell O, Heiland DH (2020) Inferring spatially transient gene expression pattern from spatial transcriptomic studies. bioRxiv. https://doi.org/10.1101/2020.10.20.346544
 

Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL, Ferrante TC, Terry R, Jeanty SS, Li C, Amamoto R, Peters DT, Turczyk BM, Marblestone AH, Inverso SA, Bernard A, Mali P, Rios X, Aach J, Church GM (2014) Highly multiplexed subcellular RNA sequencing in situ. Science 343(6177): 1360−1363

 

Liu Y, Yang M, Deng Y, Su G, Enninful A, Guo CC, Tebaldi T, Zhang D, Kim D, Bai Z, Norris E, Pan A, Li J, Xiao Y, Halene S, Fan R (2020) High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183(6): 1665−1681

 

Liu S, Punthambaker S, Iyer EPR, Ferrante T, Goodwin D, Fürth D, Pawlowski AC, Jindal K, Tam JM, Mifflin L, Alon S, Sinha A, Wassie AT, Chen F, Cheng A, Willocq V, Meyer K, Ling K-H, Camplisson CK, Kohman RE, Aach J, Lee JH, Yankner BA, Boyden ES, Church GM (2021) Barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel in situ analyses. Nucleic Acids Res 49: e58. https://doi.org/10.1093/nar/gkab120

 
Lohoff T, Ghazanfar S, Missarova A, Koulena N, Pierson N, Griffiths JA, Bardot ES, Eng CL, Tyser R, Argelaguet R, Guibentif C, Srinivas S, Briscoe J, Simons BD, Hadjantonakis AK, Göttgens B, Reik W, Nichols J, Cai L, Marioni JC (2021) Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis. Nat Biotechnol. https://doi.org/10.1038/s41587-021-01006-2
 

Longo SK, Guo MG, Ji AL, Khavari PA (2021) Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat Rev Genet 22(10): 627−644

 

Lovatt D, Ruble BK, Lee J, Dueck H, Kim TK, Fisher S, Francis C, Spaethling JM, Wolf JA, Grady MS, Ulyanova AV, Yeldell SB, Griepenburg JC, Buckley PT, Kim J, Sul JY, Dmochowski IJ, Eberwine J (2014) Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue. Nat Methods 11(2): 190−196

 

Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L (2014) Single-cell in situ RNA profiling by sequential hybridization. Nat Methods 11(4): 360−361

 

Lynch AS, Briggs D, Hope IA (1995) Developmental expression pattern screen for genes predicted in the C. elegans genome sequencing project. Nat Genet 11(3): 309−313

 

Maynard KR, Collado-Torres L, Weber LM, Uytingco C, Barry BK, Williams SR, Catallini JL, 2nd, Tran MN, Besich Z, Tippani M, Chew J, Yin Y, Kleinman JE, Hyde TM, Rao N, Hicks SC, Martinowich K, Jaffe AE (2021) Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat Neurosci 24(3): 425−436

 

Medaglia C, Giladi A, Stoler-Barak L, De Giovanni M, Salame TM, Biram A, David E, Li H, Iannacone M, Shulman Z, Amit I (2017) Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq. Science 358(6370): 1622−1626

 

Merritt CR, Ong GT, Church S, Barker K, Geiss G, Hoang M, Jung J, Liang Y, McKay-Fleisch J, Nguyen K, Sorg K, Sprague I, Warren C, Warren S, Zhou Z, Zollinger DR, Dunaway DL, Mills GB, Beechem JM (2019) High multiplex, digital spatial profiling of proteins and RNA in fixed tissue using genomic detection methods. bioRxiv. https://doi.org/10.1101/559021

 

Moffitt JR, Hao J, Wang G, Chen KH, Babcock HP, Zhuang X (2016) High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. Proc Natl Acad Sci USA 113(39): 11046−11051

 

Murakami H, Liotta L, Star RA (2000) IF-LCM: laser capture microdissection of immunofluorescently defined cells for mRNA analysis rapid communication. Kidney Int 58(3): 1346−1353

 

Nagasawa S, Kuze Y, Maeda I, Kojima Y, Motoyoshi A, Onishi T, Iwatani T, Yokoe T, Koike J, Chosokabe M, Kubota M, Seino H, Suzuki A, Seki M, Tsuchihara K, Inoue E, Tsugawa K, Ohta T, Suzuki Y (2021) Genomic profiling reveals heterogeneous populations of ductal carcinoma in situ of the breast. Commun Biol 4(1): 438. https://doi.org/10.1038/s42003-021-01959-9

 

Navarro JF, Sjostrand J, Salmen F, Lundeberg J, Stahl PL (2017) ST Pipeline: an automated pipeline for spatial mapping of unique transcripts. Bioinformatics 33: 2591−2593

 

Nguyen HQ, Chattoraj S, Castillo D, Nguyen SC, Nir G, Lioutas A, Hershberg EA, Martins NMC, Reginato PL, Hannan M, Beliveau BJ, Church GM, Daugharthy ER, Marti-Renom MA, Wu CT (2020) 3D mapping and accelerated super-resolution imaging of the human genome using in situ sequencing. Nat Methods 17(8): 822−832

 

Padovan-Merhar O, Nair GP, Biaesch AG, Mayer A, Scarfone S, Foley SW, Wu AR, Churchman LS, Singh A, Raj A (2015) Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. Mol Cell 58(2): 339−352

 

Peng G, Suo S, Chen J, Chen W, Liu C, Yu F, Wang R, Chen S, Sun N, Cui G, Song L, Tam PP, Han JD, Jing N (2016) Spatial transcriptome for the molecular annotation of lineage fates and cell identity in mid-gastrula mouse embryo. Dev Cell 36(6): 681−697

 

Peng G, Suo S, Cui G, Yu F, Wang R, Chen J, Chen S, Liu Z, Chen G, Qian Y, Tam P, Han JJ, Jing N (2019) Molecular architecture of lineage allocation and tissue organization in early mouse embryo. Nature 572(7770): 528−532

 
Pham D, Tan X, Xu J, Grice LF, Lam PY, Raghubar A, Vukovic J, Ruitenberg MJ, Nguyen Q (2020) stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. bioRxiv. https://doi.org/10.1101/2020.05.31.125658
 

Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5(10): 877−879

 
Ren X, Zhong G, Zhang Q, Zhang L, Sun Y, Zhang Z (2020) Reconstruction of cell spatial organization based on ligand-receptor mediated self-assembly. bioRxiv. https://doi.org/10.1101/2020.02.13.948521
 

Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, Welch J, Chen LM, Chen F, Macosko EZ (2019) Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363(6434): 1463−1467

 

Shah S, Takei Y, Zhou W, Lubeck E, Yun J, Eng CL, Koulena N, Cronin C, Karp C, Liaw EJ, Amin M, Cai L (2018) Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH. Cell 174(2): 363−376

 

Shaffer SM, Dunagin MC, Torborg SR, Torre EA, Emert B, Krepler C, Beqiri M, Sproesser K, Brafford PA, Xiao M, Eggan E, Anastopoulos IN, Vargas-Garcia CA, Singh A, Nathanson KL, Herlyn M, Raj A (2017) Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546: 431−435

 

Skarnes WC, Moss JE, Hurtley SM, Beddington RS (1995) Capturing genes encoding membrane and secreted proteins important for mouse development. Proc Natl Acad Sci USA 92(14): 6592−6596

 

Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro J F, Magnusson J, Giacomello S, Asp M, Westholm JO, Huss M, Mollbrink A, Linnarsson S, Codeluppi S, Borg Å, Pontén F, Costea P, Sahlén P, Mulder J, Bergmann O, Lundeberg J, Frisén J (2016) visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353(6294): 78−82

 

Stoltzfus CR, Filipek J, Gern BH, Olin BE, Leal JM, Wu Y, Lyons-Cohen MR, Huang JY, Paz-Stoltzfus CL, Plumlee CR, Pöschinger T, Urdahl KB, Perro M, Gerner MY (2020) CytoMAP: a spatial analysis toolbox reveals features of myeloid cell organization in lymphoid tissues. Cell Rep 31(3): 107523. https://doi.org/10.1016/j.celrep.2020.107523

 

Sountoulidis A, Liontos A, Nguyen HP, Firsova AB, Fysikopoulos A, Qian X, Seeger W, Sundström E, Nilsson M, Samakovlis C (2020) SCRINSHOT enables spatial mapping of cell states in tissue sections with single-cell resolution. PLoS Biol 18(11): e3000675. https://doi.org/10.1371/journal.pbio.3000675

 

Su G, Qin X, Enninful A, Bai Z, Deng Y, Liu Y, Fan R (2021) Spatial multi-omics sequencing for fixed tissue via DBiT-seq. STAR Protoc 2(2): 100532. https://doi.org/10.1016/j.xpro.2021.100532

 

Su JH, Zheng P, Kinrot SS, Bintu B, Zhuang X (2020) Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell 182(6): 1641−1659

 

Sun S, Zhu J, Zhou X (2020) Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nat Methods 17(2): 193−200

 

Svensson V, Teichmann SA, Stegle O (2018) SpatialDE: identification of spatially variable genes. Nat Methods 15(5): 343−346

 
Tran M, Yoon S, Teoh M, Andersen S, Lam PY, Purdue P, Raghubar A, Hanson SJ, Devitt K, Jones K, Walters S, Tuong ZK, Kulasinghe A, Monkman J, Soyer HP, Frazer I, Nguyen Q (2021) Spatial analysis of ligand-receptor interaction in skin cancer at genome-wide and single-cell resolution. bioRxiv. https:// doi.org/10.1101/2020.09.10.290833
 

Trcek T, Lionnet T, Shroff H, Lehmann R (2017) mRNA quantification using single-molecule FISH in Drosophila embryos. Nat Protoc 12(7): 1326−1348

 

van den Brink SC, Alemany A, van Batenburg V, Moris N, Blotenburg M, Vivié J, Baillie-Johnson P, Nichols J, Sonnen KF, Martinez Arias A, van Oudenaarden A (2020) Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids. Nature 582: 405−409

 

Vickovic S, Eraslan G, Salmen F, Klughammer J, Stenbeck L, Schapiro D, Aijo T, Bonneau R, Bergenstrahle L, Navarro JF, Gould J, Griffin GK, Borg A, Ronaghi M, Frisen J, Lundeberg J, Regev A, Stahl PL (2019) High-definition spatial transcriptomics for in situ tissue profiling. Nat Methods 16(10): 987−990

 
Vickovic S, Lötstedt B, Klughammer J, Segerstolpe Å, Rozenblatt-Rosen O, Regev A (2020) SM-Omics: an automated platform for high-throughput spatial multi-omics. bioRxiv. https://doi.org/10.1101/2020.10.14.338418
 

Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, Wu X, Vo HT, Ma XJ, Luo Y (2012) RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn 14(1): 22−29

 

Wang G, Moffitt JR, Zhuang X (2018a) Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy. Sci Rep 8(1): 4847. https://doi.org/10.1038/s41598-018-22297-7

 

Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N, Vesuna S, Evans K, Liu C, Ramakrishnan C, Liu J, Nolan GP, Bava FA, Deisseroth K (2018b) Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361(6400): eaat5691. https://doi.org/10.1126/science.aat5691

 

Xia C, Babcock HP, Moffitt JR, Zhuang X (2019) Multiplexed detection of RNA using MERFISH and branched DNA amplification. Sci Rep 9(1): 7721. https://doi.org/10.1038/s41598-019-43943-8

 
Zhang L, Mao SQ, Yao ML, Chao N, Yang Y, Ni Y, Song T, Liu Z, Yang Y, Li W (2021) Spatial transcriptome sequencing revealed spatial trajectory in the non-small cell lung cancer. bioRxiv. https://doi.org/10.1101/2021.04.26.441394
Biophysics Reports
Pages 119-135
Cite this article:
Li Z, Peng G. Spatial transcriptomics: new dimension of understanding biological complexity. Biophysics Reports, 2022, 8(3): 119-135. https://doi.org/10.52601/bpr.2021.210037

503

Views

13

Downloads

8

Crossref

4

Scopus

0

CSCD

Altmetrics

Received: 01 August 2021
Accepted: 18 October 2021
Published: 21 January 2022
© The Author(s) 2022

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return