Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Cells and tissues are exquisitely organized in a complex but ordered manner to form organs and bodies so that individuals can function properly. The spatial organization and tissue architecture represent a keynote property underneath all living organisms. Molecular architecture and cellular composition within intact tissues play a vital role in a variety of biological processes, such as forming the complicated tissue functionality, precise regulation of cell transition in all living activities, consolidation of central nervous system, cellular responses to immunological and pathological cues. To explore these biological events at a large scale and fine resolution, a genome-wide understanding of spatial cellular changes is essential. However, previous bulk RNA sequencing and single-cell RNA sequencing technologies could not obtain the important spatial information of tissues and cells, despite their ability to detect high content transcriptional changes. These limitations have prompted the development of numerous spatially resolved technologies which provide a new dimension to interrogate the regional gene expression, cellular microenvironment, anatomical heterogeneity and cell-cell interactions. Since the advent of spatial transcriptomics, related works that use these technologies have increased rapidly, and new methods with higher throughput and resolution have grown quickly, all of which hold great promise to accelerate new discoveries in understanding the biological complexity. In this review, we briefly discussed the historical evolution of spatially resolved transcriptome. We broadly surveyed the representative methods. Furthermore, we summarized the general computational analysis pipeline for the spatial gene expression data. Finally, we proposed perspectives for technological development of spatial multi-omics.
Alturkistani HA, Tashkandi FM, Mohammedsaleh ZM (2015) Histological stains: a literature review and case study. Glob J Health Sci 8(3): 72−79
Bandyopadhyay U, Fenton WA, Horwich AL, Nagy M (2014) Production of RNA for transcriptomic analysis from mouse spinal cord motor neuron cell bodies by laser capture microdissection. J Vis Exp 83: e51168. https://doi.org/10.3791/51168
Battich N, Stoeger T, Pelkmans L (2013) Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat Methods 10(11): 1127−1133
Beliveau BJ, Joyce EF, Apostolopoulos N, Yilmaz F, Fonseka CY, McCole RB, Chang Y, Li JB, Senaratne TN, Williams BR, Rouillard JM, Wu CT (2012) Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc Natl Acad Sci USA 109(52): 21301−21306
Cabili MN, Dunagin MC, McClanahan PD, Biaesch A, Padovan-Merhar O, Regev A, Rinn JL, Raj A (2015) Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol 16(1): 20. https://doi.org/10.1186/s13059-015-0586-4
Chen J, Suo S, Tam PP, Han JJ, Peng G, Jing N (2017) Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat Protoc 12(3): 566−580
Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X (2015) RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348(6233): aaa6090. https://doi.org/10.1126/science.aaa6090
Chen X, Sun YC, Zhan H, Kebschull JM, Fischer S, Matho K, Huang ZJ, Gillis J, Zador AM (2019) High-Throughput mapping of long-range neuronal projection using in situ sequencing. Cell 179(3): 772−786
Cho CS, Xi J, Si Y, Park SR, Hsu JE, Kim M, Jun G, Kang HM, Lee JH (2021) Microscopic examination of spatial transcriptome using Seq-Scope. Cell 184(13): 3559−3572
Codeluppi S, Borm LE, Zeisel A, La Manno G, van Lunteren JA, Svensson CI, Linnarsson S (2018) Spatial organization of the somatosensory cortex revealed by osmFISH. Nat Methods 15(11): 932−935
Datta S, Malhotra L, Dickerson R, Chaffee S, Sen CK, Roy S (2015) Laser capture microdissection: big data from small samples. Histol Histopathol 30(11): 1255−1269
Dries R, Zhu Q, Dong R, Linus Eng C-H, Li H, Liu K, Fu Y, Zhao T, Sarkar A, Bao F, George RE, Pierson N, Cai L, Yuan G-C (2021) Giotto, a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol : 22(1): 78. https://doi.org/10.1186/s13059-021-02286-2
Elosua-Bayes M, Nieto P, Mereu E, Gut I, Heyn H (2021) SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res 49: e50. https://doi.org/10.1093/nar/gkab043
Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. science 274(5289): 998−1001
Femino AM, Fay SF, Fogarty K, Singer RH (1998) Visualization of single RNA transcripts in situ. science 280(5363): 585−590
Francoz E, Ranocha P, Pernot C, Le Ru A, Pacquit V, Dunand C, Burlat V (2016) Complementarity of medium-throughput in situ RNA hybridization and tissue-specific transcriptomics: case study of Arabidopsis seed development kinetics. Sci Rep 6: 24644. https://doi.org/10.1038/srep24644
Hou X, Yang Y, Li P, Zeng Z, Hu W, Zhe R, Liu X, Tang D, Ou M, Dai Y (2021) Integrating spatial transcriptomics and single-cell RNA-seq reveals the gene expression profling of the human embryonic liver. Front Cell Dev Biol 9: 652408. https://doi.org/10.3389/fcell.2021.652408
Hu J, Schroeder A, Coleman K, Chen C, Auerbach BJ, Li M (2021) Statistical and machine learning methods for spatially resolved transcriptomics with histology. Comput Struct Biotechnol J 19: 3829−3841
Hu KH, Eichorst JP, McGinnis CS, Patterson DM, Chow ED, Kersten K, Jameson SC, Gartner ZJ, Rao AA, Krummel MF (2020) ZipSeq: barcoding for real-time mapping of single cell transcriptomes. Nat Methods 17: 833−843
Jemt A, Salmen F, Lundmark A, Mollbrink A, Fernandez Navarro J, Stahl PL, Yucel-Lindberg T, Lundeberg J (2016) An automated approach to prepare tissue-derived spatially barcoded RNA-sequencing libraries. Sci Rep 6: 37137. https://doi.org/10.1038/srep37137
Junker JP, Noel ES, Guryev V, Peterson KA, Shah G, Huisken J, McMahon AP, Berezikov E, Bakkers J, van Oudenaarden A (2014) Genome-wide RNA tomography in the zebrafish embryo. Cell 159(3): 662−675
Ke R, Mignardi M, Pacureanu A, Svedlund J, Botling J, Wahlby C, Nilsson M (2013) In situ sequencing for RNA analysis in preserved tissue and cells. Nat Methods 10(9): 857−860
Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL, Ferrante TC, Terry R, Jeanty SS, Li C, Amamoto R, Peters DT, Turczyk BM, Marblestone AH, Inverso SA, Bernard A, Mali P, Rios X, Aach J, Church GM (2014) Highly multiplexed subcellular RNA sequencing in situ. Science 343(6177): 1360−1363
Liu Y, Yang M, Deng Y, Su G, Enninful A, Guo CC, Tebaldi T, Zhang D, Kim D, Bai Z, Norris E, Pan A, Li J, Xiao Y, Halene S, Fan R (2020) High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183(6): 1665−1681
Liu S, Punthambaker S, Iyer EPR, Ferrante T, Goodwin D, Fürth D, Pawlowski AC, Jindal K, Tam JM, Mifflin L, Alon S, Sinha A, Wassie AT, Chen F, Cheng A, Willocq V, Meyer K, Ling K-H, Camplisson CK, Kohman RE, Aach J, Lee JH, Yankner BA, Boyden ES, Church GM (2021) Barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel in situ analyses. Nucleic Acids Res 49: e58. https://doi.org/10.1093/nar/gkab120
Longo SK, Guo MG, Ji AL, Khavari PA (2021) Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat Rev Genet 22(10): 627−644
Lovatt D, Ruble BK, Lee J, Dueck H, Kim TK, Fisher S, Francis C, Spaethling JM, Wolf JA, Grady MS, Ulyanova AV, Yeldell SB, Griepenburg JC, Buckley PT, Kim J, Sul JY, Dmochowski IJ, Eberwine J (2014) Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue. Nat Methods 11(2): 190−196
Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L (2014) Single-cell in situ RNA profiling by sequential hybridization. Nat Methods 11(4): 360−361
Lynch AS, Briggs D, Hope IA (1995) Developmental expression pattern screen for genes predicted in the C. elegans genome sequencing project. Nat Genet 11(3): 309−313
Maynard KR, Collado-Torres L, Weber LM, Uytingco C, Barry BK, Williams SR, Catallini JL, 2nd, Tran MN, Besich Z, Tippani M, Chew J, Yin Y, Kleinman JE, Hyde TM, Rao N, Hicks SC, Martinowich K, Jaffe AE (2021) Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat Neurosci 24(3): 425−436
Medaglia C, Giladi A, Stoler-Barak L, De Giovanni M, Salame TM, Biram A, David E, Li H, Iannacone M, Shulman Z, Amit I (2017) Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq. Science 358(6370): 1622−1626
Merritt CR, Ong GT, Church S, Barker K, Geiss G, Hoang M, Jung J, Liang Y, McKay-Fleisch J, Nguyen K, Sorg K, Sprague I, Warren C, Warren S, Zhou Z, Zollinger DR, Dunaway DL, Mills GB, Beechem JM (2019) High multiplex, digital spatial profiling of proteins and RNA in fixed tissue using genomic detection methods. bioRxiv. https://doi.org/10.1101/559021
Moffitt JR, Hao J, Wang G, Chen KH, Babcock HP, Zhuang X (2016) High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. Proc Natl Acad Sci USA 113(39): 11046−11051
Murakami H, Liotta L, Star RA (2000) IF-LCM: laser capture microdissection of immunofluorescently defined cells for mRNA analysis rapid communication. Kidney Int 58(3): 1346−1353
Nagasawa S, Kuze Y, Maeda I, Kojima Y, Motoyoshi A, Onishi T, Iwatani T, Yokoe T, Koike J, Chosokabe M, Kubota M, Seino H, Suzuki A, Seki M, Tsuchihara K, Inoue E, Tsugawa K, Ohta T, Suzuki Y (2021) Genomic profiling reveals heterogeneous populations of ductal carcinoma in situ of the breast. Commun Biol 4(1): 438. https://doi.org/10.1038/s42003-021-01959-9
Navarro JF, Sjostrand J, Salmen F, Lundeberg J, Stahl PL (2017) ST Pipeline: an automated pipeline for spatial mapping of unique transcripts. Bioinformatics 33: 2591−2593
Nguyen HQ, Chattoraj S, Castillo D, Nguyen SC, Nir G, Lioutas A, Hershberg EA, Martins NMC, Reginato PL, Hannan M, Beliveau BJ, Church GM, Daugharthy ER, Marti-Renom MA, Wu CT (2020) 3D mapping and accelerated super-resolution imaging of the human genome using in situ sequencing. Nat Methods 17(8): 822−832
Padovan-Merhar O, Nair GP, Biaesch AG, Mayer A, Scarfone S, Foley SW, Wu AR, Churchman LS, Singh A, Raj A (2015) Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. Mol Cell 58(2): 339−352
Peng G, Suo S, Chen J, Chen W, Liu C, Yu F, Wang R, Chen S, Sun N, Cui G, Song L, Tam PP, Han JD, Jing N (2016) Spatial transcriptome for the molecular annotation of lineage fates and cell identity in mid-gastrula mouse embryo. Dev Cell 36(6): 681−697
Peng G, Suo S, Cui G, Yu F, Wang R, Chen J, Chen S, Liu Z, Chen G, Qian Y, Tam P, Han JJ, Jing N (2019) Molecular architecture of lineage allocation and tissue organization in early mouse embryo. Nature 572(7770): 528−532
Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5(10): 877−879
Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, Welch J, Chen LM, Chen F, Macosko EZ (2019) Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363(6434): 1463−1467
Shah S, Takei Y, Zhou W, Lubeck E, Yun J, Eng CL, Koulena N, Cronin C, Karp C, Liaw EJ, Amin M, Cai L (2018) Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH. Cell 174(2): 363−376
Shaffer SM, Dunagin MC, Torborg SR, Torre EA, Emert B, Krepler C, Beqiri M, Sproesser K, Brafford PA, Xiao M, Eggan E, Anastopoulos IN, Vargas-Garcia CA, Singh A, Nathanson KL, Herlyn M, Raj A (2017) Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546: 431−435
Skarnes WC, Moss JE, Hurtley SM, Beddington RS (1995) Capturing genes encoding membrane and secreted proteins important for mouse development. Proc Natl Acad Sci USA 92(14): 6592−6596
Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro J F, Magnusson J, Giacomello S, Asp M, Westholm JO, Huss M, Mollbrink A, Linnarsson S, Codeluppi S, Borg Å, Pontén F, Costea P, Sahlén P, Mulder J, Bergmann O, Lundeberg J, Frisén J (2016) visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353(6294): 78−82
Stoltzfus CR, Filipek J, Gern BH, Olin BE, Leal JM, Wu Y, Lyons-Cohen MR, Huang JY, Paz-Stoltzfus CL, Plumlee CR, Pöschinger T, Urdahl KB, Perro M, Gerner MY (2020) CytoMAP: a spatial analysis toolbox reveals features of myeloid cell organization in lymphoid tissues. Cell Rep 31(3): 107523. https://doi.org/10.1016/j.celrep.2020.107523
Sountoulidis A, Liontos A, Nguyen HP, Firsova AB, Fysikopoulos A, Qian X, Seeger W, Sundström E, Nilsson M, Samakovlis C (2020) SCRINSHOT enables spatial mapping of cell states in tissue sections with single-cell resolution. PLoS Biol 18(11): e3000675. https://doi.org/10.1371/journal.pbio.3000675
Su G, Qin X, Enninful A, Bai Z, Deng Y, Liu Y, Fan R (2021) Spatial multi-omics sequencing for fixed tissue via DBiT-seq. STAR Protoc 2(2): 100532. https://doi.org/10.1016/j.xpro.2021.100532
Su JH, Zheng P, Kinrot SS, Bintu B, Zhuang X (2020) Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell 182(6): 1641−1659
Sun S, Zhu J, Zhou X (2020) Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nat Methods 17(2): 193−200
Svensson V, Teichmann SA, Stegle O (2018) SpatialDE: identification of spatially variable genes. Nat Methods 15(5): 343−346
Trcek T, Lionnet T, Shroff H, Lehmann R (2017) mRNA quantification using single-molecule FISH in Drosophila embryos. Nat Protoc 12(7): 1326−1348
van den Brink SC, Alemany A, van Batenburg V, Moris N, Blotenburg M, Vivié J, Baillie-Johnson P, Nichols J, Sonnen KF, Martinez Arias A, van Oudenaarden A (2020) Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids. Nature 582: 405−409
Vickovic S, Eraslan G, Salmen F, Klughammer J, Stenbeck L, Schapiro D, Aijo T, Bonneau R, Bergenstrahle L, Navarro JF, Gould J, Griffin GK, Borg A, Ronaghi M, Frisen J, Lundeberg J, Regev A, Stahl PL (2019) High-definition spatial transcriptomics for in situ tissue profiling. Nat Methods 16(10): 987−990
Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, Wu X, Vo HT, Ma XJ, Luo Y (2012) RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn 14(1): 22−29
Wang G, Moffitt JR, Zhuang X (2018a) Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy. Sci Rep 8(1): 4847. https://doi.org/10.1038/s41598-018-22297-7
Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N, Vesuna S, Evans K, Liu C, Ramakrishnan C, Liu J, Nolan GP, Bava FA, Deisseroth K (2018b) Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361(6400): eaat5691. https://doi.org/10.1126/science.aat5691
Xia C, Babcock HP, Moffitt JR, Zhuang X (2019) Multiplexed detection of RNA using MERFISH and branched DNA amplification. Sci Rep 9(1): 7721. https://doi.org/10.1038/s41598-019-43943-8
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.