Journal Home > Volume 8 , Issue 3

Point-of-care testing (POCT) is essential for providing a rapid diagnostic result in a prompt on-site diagnosis and treatment. A quick analysis time and a high sensitivity, with a sample-to-answer format, are the most important features for current POCT diagnostic systems. This review covers recent advances in POCT technologies with an emphasis on demonstrated and commercially available POCT diagnostic systems with laboratory quality using lateral flow immunoassay (LFIA). The system includes the integration of nanoparticles (NPs) in lateral flow test strips (LFTSs) and the mechanism through which particles improve the analytical performance of the fabricated strips. Several examples of NP-based LFTSs were selected to illustrate novel concepts or devices with promising applications as screening tools and superior alternatives to existing conventional strategies in clinical analysis, food safety, and environmental monitoring. In each analyte category, detection methods, configuration of LFIA modules, and advantages of POCT systems are reviewed and discussed along with future prospects. This review also discusses novel signal-enhancement strategies, optimal reader systems, and multiplex design prototypes, which have been employed for highly sensitive multiplex assay of LFTSs.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 18 September 2016
Revised: 20 September 2016
Published: 27 September 2016
Issue date: September 2016

Copyright

© 2016 Kan Wang, Weijian Qin, Yafei Hou and Kun Xiao.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 81571835, 61503246, 81672247 and 81671737), National Key Basic Research Program (973 Project) (No.2015CB931802), the 863 High-Tech Project of China (No. 2014AA020700), and Shanghai Science and Technology Fund (No. 13NM1401500 and 15DZ2252000).

Rights and permissions

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return