Journal Home > Volume 14 , Issue 4
Background

Over the last decades, the exposure to titanium dioxide nanoparticles (TiO2 NPs) has increased due to the wide application in industry, food adduct, medicine, cosmetic products, etc. Literature review showed that the TiO2 NPs exert toxic effects on several organs.

Methods

We searched PubMed, MEDLINE and the other databases with the following keywords, "titanium dioxide nanoparticle", "TiO2 NPs", "myocardial infarction", "endothelial", "blood pressure", "heart" and "cardiovascular", and reviewed the literature by focusing on the toxic effects of TiO2 NPs on the cardiovascular system, and possible underlying mechanism.

Results

The toxic effects of TiO2 NPs on the cardiovascular system are controversial but some possible mechanisms were proposed. TiO2 NPs and nanoparticle-derived titanium induce cardiac injury, endothelial dysfunction and increase blood pressure and heart rate. These effects are mediated via systemic or local oxidative stress and inflammation.

Conclusion

The TiO2 NPs toxicity is dependent on cell type and particle characteristic, and the controversial results may be due to these variables. However, a growing body of evidence confirmed the possible TiO2 NPs toxicity on the cardiovascular system.


menu
Abstract
Full text
Outline
About this article

Titanium Dioxide Nanoparticle and Cardiovascular Diseases: A Critical Review of the Literature and Possible Underlying Mechanisms

Show Author's information Shiva Mehran1Soroush Ghodratizadeh2Ali Zolfi-Gol3Hamed Charkhian4Mojtaba Ranjbari4Vahed Ebrahimi5Zafar Gholinejad6( )
Department of Biology, Higher Education Institute of Rabe-Rashidi, Tabriz, Iran
Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
Department of Pediatrics Cardiology, Shahid Motahari Hospital, Urmia University of Medical Sciences, Urmia, Iran
Department of Biology, Urmia Branch, Islamic Azad University, Urmia, Iran
Department of Biochemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
Department of Medical Laboratory Science, Urmia Branch, Islamic Azad University, Urmia, Iran

Abstract

Background

Over the last decades, the exposure to titanium dioxide nanoparticles (TiO2 NPs) has increased due to the wide application in industry, food adduct, medicine, cosmetic products, etc. Literature review showed that the TiO2 NPs exert toxic effects on several organs.

Methods

We searched PubMed, MEDLINE and the other databases with the following keywords, "titanium dioxide nanoparticle", "TiO2 NPs", "myocardial infarction", "endothelial", "blood pressure", "heart" and "cardiovascular", and reviewed the literature by focusing on the toxic effects of TiO2 NPs on the cardiovascular system, and possible underlying mechanism.

Results

The toxic effects of TiO2 NPs on the cardiovascular system are controversial but some possible mechanisms were proposed. TiO2 NPs and nanoparticle-derived titanium induce cardiac injury, endothelial dysfunction and increase blood pressure and heart rate. These effects are mediated via systemic or local oxidative stress and inflammation.

Conclusion

The TiO2 NPs toxicity is dependent on cell type and particle characteristic, and the controversial results may be due to these variables. However, a growing body of evidence confirmed the possible TiO2 NPs toxicity on the cardiovascular system.

Keywords: Inflammation, Nanoparticle, Titanium dioxide, Oxidative stress, Cardiovascular diseases, Endothelial dysfunction, Cardiac injury

References(121)

[1]

G. Santulli. Epidemiology of cardiovascular disease in the 21st century: Updated numbers and updated facts. Journal of Cardiovascular Disease Research, 2013, 1: 1.

[2]

L. Dai, Y.F. Qi, L.X. Jia, et al. Nanotechnology in Cardiovascular Diseases. Encyclopedia of Nanotechnology. Dordrecht: Springer, 2015: 1‒4. https://doi.org/10.1007/978-94-007-6178-0_336-2

DOI
[3]

Z.L. Han, J.N. Shu, X. Liang, et al. Label-free ratiometric electrochemiluminescence aptasensor based on nanographene oxide wrapped titanium dioxide nanoparticles with potential-resolved electrochemilumine-scence. Analytical Chemistry, 2019, 91: 12260‒12267. https://doi.org/10.1021/acs.analchem.9b02318

[4]

M.P. Mani, S.K. Jaganathan, A.M. Faudzi, et al. Engineered electrospun polyurethane composite patch combined with Bi-functional components rendering high strength for cardiac tissue engineering. Polymers, 2019, 11: 705. https://doi.org/10.3390/polym11040705

[5]

M.P. Sauvant, D. Pepin. Drinking water and cardiovascular disease. Food and Chemical Toxicology, 2002, 40: 1311‒1325. https://doi.org/10.1016/S0278-6915(02)00081-9

[6]

B.A. Franklin, R. Brook, C. Arden Pope. Air pollution and cardiovascular disease. Current Problems in Cardiology, 2015, 40: 207‒238. https://doi.org/10.1016/j.cpcardiol.2015.01.003

[7]

A. Weir, P. Westerhoff, L. Fabricius, et al. Titanium dioxide nanoparticles in food and personal care products. Environmental Science & Technology, 2012, 46: 2242‒2250. https://doi.org/10.1021/es204168d

[8]

H. Kaminski, M. Beyer, H. Fissan, et al. Measurements of nanoscale TiO2 and Al2O3 in industrial workplace environments - methodology and results. Aerosol and Air Quality Research, 2015, 15: 129‒141. https://doi.org/10.4209/aaqr.2014.03.0065

[9]

B. Dréno, A. Alexis, B. Chuberre, et al. Safety of titanium dioxide nanoparticles in cosmetics. Journal of the European Academy of Dermatology Venereology, 2019, 33: 34‒46. https://doi.org/10.1111/jdv.15943

[10]

J. Musial, R. Krakowiak, D.T. Mlynarczyk, et al. Titanium dioxide nanoparticles in food and personal care products-what do we know about their safety? Nanomaterials (Basel), 2020, 10: 1110. https://doi.org/10.3390/nano10061110

[11]

A.B. da Silva, M. Miniter, W. Thom, et al. Gastrointestinal absorption and toxicity of nanoparticles and microparticles: Myth, reality and pitfalls explored through titanium dioxide. Current Opinion in Toxicology, 2020, 19: 112‒120. https://doi.org/10.1016/j.cotox.2020.02.007

[12]

Y.F. Li, J.G. Li, J.L. Yin, et al. Systematic influence induced by 3 nm titanium dioxide following intratracheal instillation of mice. Journal of Nanoscience Nanotechnology, 2010, 10: 8544‒8549. https://doi.org/10.1166/jnn.2010.2690

[13]

W. Sun, Y.X. Du, J.Q. Chen, et al. Interaction between titanium dioxide nanoparticles and human serum albumin revealed by fluorescence spectroscopy in the absence of photoactivation. Journal of Luminescence, 2009, 129: 778‒783. https://doi.org/10.1016/j.jlumin.2009.02.010

[14]

R. Tantra, J. Tompkins, P. Quincey. Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension. Colloids and Surfaces B: Biointerfaces, 2010, 75: 275‒281. https://doi.org/10.1016/j.colsurfb.2009.08.049

[15]

M. Eydner, D. Schaudien, O. Creutzenberg, et al. Impacts after inhalation of nano- and fine-sized titanium dioxide particles: Morphological changes, translocation within the rat lung, and evaluation of particle deposition using the relative deposition index. Inhalation Toxicology, 2012, 24: 557‒569. https://doi.org/10.3109/08958378.2012.697494

[16]

W. Souza, S.G. Piperni, P. Laviola, et al. The two faces of titanium dioxide nanoparticles bio-camouflage in 3D bone spheroids. Scientific Reports, 2019, 9: 9309. https://doi.org/10.1038/s41598-019-45797-6

[17]

M. Skocaj, M. Filipic, J. Petkovic, et al. Titanium dioxide in our everyday life; is it safe? Radiology and Oncology, 2011, 45: 227‒247. https://doi.org/10.2478/v10019-011-0037-0

[18]

M. Benčina, A. Iglič, M. Mozetič, et al. Crystallized TiO2 nanosurfaces in biomedical applications. Nanomaterials (Basel), 2020, 10: 1121. https://doi.org/10.3390/nano10061121

[19]

19. T. Kodama. Study on biocompatibility of titanium alloys. Kokubyo Gakkai Zasshi, 1989, 56: 263‒288. https://doi.org/10.5357/koubyou.56.263

[20]

E. Le Roux. Recent advances on tailor-made titanium catalysts for biopolymer synthesis. Coordination Chemistry Reviews, 2016, 306: 65‒85. https://doi.org/10.1016/j.ccr.2015.06.006

[21]

H.B. Shi, R. Magaye, V. Castranova, et al. Titanium dioxide nanoparticles: A review of current toxicological data. Particle and Fibre Toxicology, 2013, 10: 15. https://doi.org/10.1186/1743-8977-10-15

[22]

I. Iavicoli, V. Leso, A. Bergamaschi. Toxicological effects of titanium dioxide nanoparticles: A review of in vivo studies. Journal of Nanomaterials, 2012, 2012: 5. https://doi.org/10.1155/2012/964381

[23]

I. Iavicoli, V. Leso, L. Fontana, et al. Toxicological effects of titanium dioxide nanoparticles: A review of in vitro mammalian studies. European Review for Medical and Pharmacological Sciences, 2011, 15: 481‒508.

[24]

R.D. Handy, B.J. Shaw. Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment and the public perception of nanotechnology. Health, Risk & Society, 2007, 9: 125‒144. https://doi.org/10.1080/13698570701306807

[25]

J.X. Wang, Y.B. Fan. Lung injury induced by TiO2 nanoparticles depends on their structural features: Size, shape, crystal phases, and surface coating. International Journal of Molecular Sciences, 2014, 15: 22258‒22278. https://doi.org/10.3390/ijms151222258

[26]

J.K. Jiang, G. Oberdörster, P. Biswas. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research, 2009, 11: 77‒89. https://doi.org/10.1007/s11051-008-9446-4

[27]

M. Shakeel, F. Jabeen, S. Shabbir, et al. Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: A review. Biological Trace Element Research, 2016, 172: 1‒36. https://doi.org/10.1007/s12011-015-0550-x

[28]

B. Uttara, A.V. Singh, P. Zamboni, et al. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Current neuropharmacology, 2009, 7: 65‒74. https://doi.org/10.2174/157015909787602823

[29]

D.A. Pratt, K.A. Tallman, N.A. Porter. Free radical oxidation of polyunsaturated lipids: New mechanistic insights and the development of peroxyl radical clocks. Accounts of chemical Research, 2011, 44: 458‒467. https://doi.org/10.1021/ar200024c

[30]

J. Hou, L.Y. Wang, C.J. Wang, et al. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. Journal of Environmental Sciences, 2019, 75: 40‒53. https://doi.org/10.1016/j.jes.2018.06.010

[31]

S.H. Lee, S.K. Jeong, S.K. Ahn. An update of the defensive barrier function of skin. Yonsei Medical Journal, 2006, 47: 293‒306. https://doi.org/10.3349/ymj.2006.47.3.293

[32]

R.E. Baynes, E. Hodgson. Absorption and distribution of toxicants. A Textbook of Modern Toxicology. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004: 75‒110. https://doi.org/10.1002/0471646776.ch6

[33]

E. Huerta-García, M.P. Ramos-Godinez, A. López-Saavedra, et al. Internalization of titanium dioxide nanoparticles is mediated by actin-dependent reorganization and clathrin- and dynamin-mediated endocytosis in H9C2 rat cardiomyoblasts. Chemical Research in Toxicology, 2019, 32: 578‒588. https://doi.org/10.1021/acs.chemrestox.8b00284

[34]

L. Sheng, X.C. Wang, X.Z. Sang, et al. Cardiac oxidative damage in mice following exposure to nanoparticulate titanium dioxide. Journal of Biomedical Materials Research Part A, 2013, 101: 3238‒3246. https://doi.org/10.1002/jbm.a.34634

[35]

M. Savi, S. Rossi, L. Bocchi, et al. Titanium dioxide nanoparticles promote arrhythmias via a direct interaction with rat cardiac tissue. Particle and Fibre Toxicology, 2014, 11: 63. https://doi.org/10.1186/s12989-014-0063-3

[36]

H. Kan, Z.X. Wu, S.H. Young, et al. Pulmonary exposure of rats to ultrafine titanium dioxide enhances cardiac protein phosphorylation and substance P synthesis in nodose Ganglia. Nanotoxicology, 2012, 6: 736‒745. https://doi.org/10.3109/17435390.2011.611915

[37]

X.H. Chang, Y.X. Xie, J.R. Wu, et al. Toxicological characteristics of titanium dioxide nanoparticle in rats. Journal of Nanoscience and Nanotechnology, 2015, 15: 1135-1142. https://doi.org/10.1166/jnn.2015.8998

[38]

J.X. Wang, G.Q. Zhou, C.Y. Chen, et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicology Letters, 2007, 168: 176‒185. https://doi.org/10.1016/j.toxlet.2006.12.001

[39]

A. Nemmar, K. Melghit, B.H. Ali. The acute proinflammatory and prothrombotic effects of pulmonary exposure to rutile TiO2 nanorods in rats. Experimental Biology and Medicine, 2008, 233: 610‒619. https://doi.org/10.3181/0706-rm-165

[40]

F.S. Hong, L. Wang, X.H. Yu, et al. Toxicological effect of TiO2 nanoparticle-induced myocarditis in mice. Nanoscale Research Letters, 2015, 10: 326. https://doi.org/10.1186/s11671-015-1029-6

[41]

H.T. Liu, L.L. Ma, J.F. Zhao, et al. Biochemical toxicity of nano-anatase TiO2 particles in mice. Biological Trace Element Research, 2009, 129: 170‒180. https://doi.org/10.1007/s12011-008-8285-6

[42]

J.Y. Chen, X. Dong, J. Zhao, et al. In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. Journal of Applied Toxicology, 2009, 29: 330‒337. https://doi.org/10.1002/jat.1414

[43]

D. Elgrabli, R. Beaudouin, N. Jbilou, et al. Biodistribution and clearance of TiO2 nanoparticles in rats after intravenous injection. PLoS One, 2015, 10: e0124490. https://doi.org/10.1371/journal.pone.0124490

[44]

Y. Wang, Z.J. Chen, T. Ba, et al. Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. Small, 2013, 9: 1742‒1752. https://doi.org/10.1002/smll.201201185

[45]

Z.J. Chen, Y. Wang, L. Zhuo, et al. Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration. Toxicology Letters, 2015, 239: 123‒130. https://doi.org/10.1016/j.toxlet.2015.09.013

[46]

X.H. Yu, X.Y. Zhao, Y.G. Ze, et al. Changes of serum parameters of TiO2 nanoparticle-induced atherosclerosis in mice. Journal of Hazardous Materials, 2014, 280: 364‒371. https://doi.org/10.1016/j.jhazmat.2014.08.015

[47]

T. Chen, J.Q. Hu, C.Y. Chen, et al. Cardiovascular effects of pulmonary exposure to titanium dioxide nanoparticles in ApoE knockout mice. Journal of Nanoscience and Nanotechnology, 2013, 13: 3214-3222. https://doi.org/10.1166/jnn.2013.7147

[48]

L. Mikkelsen, M. Sheykhzade, K.A. Jensen, et al. Modest effect on plaque progression and vasodilatory function in atherosclerosis-prone mice exposed to nanosized TiO(2). Particle and Fibre Toxicology, 2011, 8: 32. https://doi.org/10.1186/1743-8977-8-32

[49]

J.Q. Hu, C.Y. Chen, R. Bai, et al. Effect of nano-TiO(2) intratracheal instillation on lipid metabolism of AopE gene-knockout mice. Zhonghua Yu Fang Yi Xue Za Zhi Chinese Journal of Preventive Medicine, 2010, 44: 780‒784. https://doi.org/10.3760/CMA.J.ISSN.0253-9624.2010.09.004

[50]

M. Tang, T. Zhang, Y.Y. Xue, et al. Metabonomic studies of biochemical changes in the serum of rats by intratracheally instilled TiO2 nanoparticles. Journal of Nanoscience and Nanotechnology, 2011, 11: 3065‒3074. https://doi.org/10.1166/jnn.2011.3604

[51]

H.L. Hu, Q. Guo, C.L. Wang, et al. Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species-induced insulin resistance in mice. Journal of Applied Toxicology, 2015, 35: 1122‒1132. https://doi.org/10.1002/jat.3150

[52]

Z.J. Chen, D. Zhou, Y. Wang, et al. Combined effect of titanium dioxide nanoparticles and glucose on the cardiovascular system in young rats after oral administration. Journal of Appllied Toxicology, 2019, 39: 590‒602. https://doi.org/10.1002/jat.3750

[53]

Y. Suzuki, S. Tada-Oikawa, G. Ichihara, et al. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation. Toxicology and Applied Pharmacology, 2014, 278: 16‒25. https://doi.org/10.1016/j.taap.2014.04.010

[54]

M. Giovanni, J. Yue, L. Zhang, et al. Pro-inflammatory responses of RAW264.7 macrophages when treated with ultralow concentrations of silver, titanium dioxide, and zinc oxide nanoparticles. Journal of Hazardous Materials, 2015, 297: 146‒152. https://doi.org/10.1016/j.jhazmat.2015.04.081

[55]

S. Triboulet, C. Aude-Garcia, L. Armand, et al. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macro-phages. PLoS One, 2015, 10: e0124496. https://doi.org/10.1371/journal.pone.0124496

[56]

R. Liu, X.Y. Zhang, Y.P. Pu, et al. Small-sized titanium dioxide nanoparticles mediate immune toxicity in rat pulmonary alveolar macrophages in vivo. Journal of Nanoscience and Nanotechnology, 2010, 10: 5161‒5169. https://doi.org/10.1166/jnn.2010.2420

[57]

W.C. Xu, X. Dong, J.L. Ding, et al. Nanotubular TiO2 regulates macrophage M2 polarization and increases macrophage secretion of VEGF to accelerate endothelialization via the ERK1/2 and PI3K/AKT pathways. International Journal of Nanomedicine, 2019, 14: 441‒455. https://doi.org/10.2147/ijn.s188439

[58]

Y. Hou, M. Lai, X. Chen, et al. Effects of mesoporous SiO2, Fe3O4, and TiO2 nanoparticles on the biological functions of endothelial cells in vitro. Journal of Biomedical Materials Research Part A, 2014, 102: 1726‒1736. https://doi.org/10.1002/jbm.a.34839

[59]

Z. Gholinejad, A. Ghasemian, Y. Tutar, et al. N-acetyl cysteine and metal nanoparticles internalization: A critical methodological aspect. Journal of Bionanoscience, 2018, 12: 700‒704. https://doi.org/10.1166/jbns.2018.1587

[60]

E. Huerta-García, J.A. Pérez-Arizti, S.G. Márquez-Ramírez, et al. Titanium dioxide nanoparticles induce strong oxidative stress and mitochondrial damage in glial cells. Free Radical Biology and Medicine, 2014, 73: 84‒94. https://doi.org/10.1016/j.freeradbiomed.2014.04.026

[61]

A. Montiel-Dávalos, J.L. Ventura-Gallegos, E. Alfaro-Moreno, et al. TiO2 nanoparticles induce dysfunction and activation of human endothelial cells. Chemical Research in Toxicology, 2012, 25: 920‒930. https://doi.org/10.1021/tx200551u

[62]

M.D.E.L.P. Ramos-Godínez, B.E. González-Gómez, A. Montiel-Dávalos, et al. TiO2 nanoparticles induce endothelial cell activation in a pneumocyte-endothelial co-culture model. Toxicology in Vitro Int. J. Publ. Assoc. BIBRA, 2013, 27: 774‒781. https://doi.org/10.1016/j.tiv.2012.12.010

[63]

S.G. Han, B. Newsome, B. Hennig. Titanium dioxide nanoparticles increase inflammatory responses in vascular endothelial cells. Toxicology, 2013, 306: 1‒8. https://doi.org/10.1016/j.tox.2013.01.014

[64]

S. Guney-Ayra, et al. Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. Biochemical Journal, 2012, 441: 813‒821. https://doi.org/10.1042/bj20111252

[65]

R. Alinovi, M. Goldoni, S. Pinelli, et al. Oxidative and pro-inflammatory effects of cobalt and titanium oxide nanoparticles on aortic and venous endothelial cells. Toxicology in Vitro, 2015, 29: 426‒437. https://doi.org/10.1016/j.tiv.2014.12.007

[66]

Z. Gholinejad, M.H. Khadem Ansari, Y. Rasmi. Titanium dioxide nanoparticles induce endothelial cell apoptosis via cell membrane oxidative damage and p38, PI3K/Akt, NF-κB signaling pathways modulation. Journal of Trace Elements in Medicine and Biology, 2019, 54: 27‒35. https://doi.org/10.1016/j.jtemb.2019.03.008

[67]

Q.A. Hathaway, A.J. Durr, D.L. Shepherd, et al. miRNA-378a as a key regulator of cardiovascular health following engineered nanomaterial inhalation exposure. Nanotoxicology, 2019, 13: 644‒663. https://doi.org/10.1080/17435390.2019.1570372

[68]

Q.Q. Yan, L. Yang, J. Zhao, et al. Comparative experiment on nanoparticle-induced toxicity in human vascular endothelial cells. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, Chinese Journal of Industrial Hygiene and Occupational Diseases 2012, 30: 820‒824.

[69]

L. Peng, A.J. Barczak, R.A. Barbeau, et al. Whole genome expression analysis reveals differential effects of TiO2 nanotubes on vascular cells. Nano Letters, 2010, 10: 143‒148. https://doi.org/10.1021/nl903043z

[70]

Y.X. Gu, S.S. Cheng, G. Chen, et al. The effects of endoplasmic reticulum stress inducer thapsigargin on the toxicity of ZnO or TiO2 nanoparticles to human endothelial cells. Toxicology Mechanisms and Methods, 2017, 27: 191‒200. https://doi.org/10.1080/15376516.2016.1273429

[71]

N. Bayat, V.R. Lopes, J. Schölermann, et al. Vascular toxicity of ultra-small TiO2 nanoparticles and single walled carbon nanotubes in vitro and in vivo. Biomaterials, 2015, 63: 1‒13. https://doi.org/10.1016/j.biomaterials.2015.05.044

[72]

V. Spigoni, M. Cito, R. Alinovi, et al. Effects of TiO2 and Co3O4 nanoparticles on circulating angiogenic cells. PLoS One, 2015, 10: e0119310. https://doi.org/10.1371/journal.pone.0119310

[73]

S. Smulders, K. Luyts, G. Brabants, et al. Toxicity of nanoparticles embedded in paints compared to pristine nanoparticles, in vitro study. Toxicology Letters, 2015, 232: 333‒339. https://doi.org/10.1016/j.toxlet.2014.11.030

[74]

R. Bengalli, P. Mantecca, M. Camatini, et al. Effect of nanoparticles and environmental particles on a cocultures model of the air-blood barrier. Biomed Res. Int. , 2013, 2013: 801214. https://doi.org/10.1155/2013/801214

[75]

T.R. Nurkiewicz, D.W. Porter, A.F. Hubbs, et al. Pulmonary particulate matter and systemic microvascular dysfunction. Research report (Health Effects Institute), 2011: 3‒48.

[76]

T.R. Nurkiewicz, D.W. Porter, A.F. Hubbs, et al. Pulmonary nanoparticle exposure disrupts systemic microvascular nitric oxide signaling. Toxicological Science, 2009, 110: 191‒203. https://doi.org/10.1093/toxsci/kfp051

[77]

A. Courtois, P. Andujar, Y. Ladeiro, et al. Impairment of NO-dependent relaxation in intralobar pulmonary arteries: Comparison of urban particulate matter and manufactured nanoparticles. Environmental Health Perspectives, 2008, 116: 1294‒1299. https://doi.org/10.1289/ehp.11021

[78]

M.I. Setyawati, C.Y. Tay, S.L. Chia, et al. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nature Communications, 2013, 4: 1673. https://doi.org/10.1038/ncomms2655

[79]

W.I. Hagens, A.G. Oomen, W.H. de Jong, et al. What do we (need to) know about the kinetic properties of nanoparticles in the body? Regulatory Toxicology and Pharmacology, 2007, 49: 217‒229. https://doi.org/10.1016/j.yrtph.2007.07.006

[80]

Y.M. Duan, J. Liu, L.L. Ma, et al. Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials, 2010, 31: 894‒899. https://doi.org/10.1016/j.biomaterials.2009.10.003

[81]

D. Vasantharaja, V. Ramalingam, G. Reddy. Titanium dioxide nanoparticles induced alteration in haematological indices of adult male wistar rats. Journal of Academia and Industrial Research, 2015.3: 632‒635.

[82]

X.Z. Sang, L. Zheng, Q.Q. Sun, et al. The chronic spleen injury of mice following long-term exposure to titanium dioxide nanoparticles. Journal of Biomedical Materials Research Part A, 2012, 100A: 894‒902. https://doi.org/10.1002/jbm.a.34024

[83]

M. Ghosh, A. Chakraborty, A. Mukherjee. Cytotoxic, genotoxic and the hemolytic effect of titanium dioxide (TiO2) nanoparticles on human erythrocyte and lymphocyte cells in vitro. Journal of Applied Toxicology, 2013, 33: 1097‒1110. https://doi.org/10.1002/jat.2863

[84]

I. Grissa, J. Elghoul, L. Ezzi, et al. Anemia and genotoxicity induced by sub-chronic intragastric treatment of rats with titanium dioxide nanoparticles. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2015, 794: 25‒31. https://doi.org/10.1016/j.mrgentox.2015.09.005

[85]

N. Haberl, S. Hirn, M. Holzer, et al. Effects of acute systemic administration of TiO2, ZnO, SiO2, and Ag nanoparticles on hemodynamics, hemostasis and leukocyte recruitment. Nanotoxicology, 2015, 9: 963‒971. https://doi.org/10.3109/17435390.2014.992815

[86]

J.Y. Xu, H.B. Shi, M. Ruth, et al. Acute toxicity of intravenously administered titanium dioxide nanoparticles in mice. PLoS One, 2013, 8: e70618. https://doi.org/10.1371/journal.pone.0070618

[87]

N.R. Ben Younes, S. Amara, I. Mrad, et al. Subacute toxicity of titanium dioxide (TiO2) nanoparticles in male rats: Emotional behavior and pathophysiological examination. Environmental Science and Pollution Research, 2015, 22: 8728‒8737. https://doi.org/10.1007/s11356-014-4002-5

[88]

Z.J. Deng, G. Mortimer, T. Schiller, et al. Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology, 2009, 20: 455101. https://doi.org/10.1088/0957-4484/20/45/455101

[89]

B. Ekstrand-Hammarström, J. Hong, P. Davoodpour, et al. TiO2 nanoparticles tested in a novel screening whole human blood model of toxicity trigger adverse activation of the kallikrein system at low concentrations. Biomaterials, 2015, 51: 58‒68. https://doi.org/10.1016/j.biomaterials.2015.01.031

[90]

S.C. Roy, M. Paulose, C.A. Grimes. The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. Biomaterials, 2007, 28: 4667‒4672. https://doi.org/10.1016/j.biomaterials.2007.07.045

[91]

B.M. Rothen-Rutishauser, S. Schürch, B. Haenni, et al. Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environmental Science & Technology, 2006, 40: 4353‒4359. https://doi.org/10.1021/es0522635

[92]

Y. Aisaka, R. Kawaguchi, S. Watanabe, et al. Hemolysis caused by titanium dioxide particles. Inhalation Toxicology, 2008, 20: 891‒893. https://doi.org/10.1080/08958370802304123

[93]

N.N. Zhou, X.B. Lin, D.G. Liu, et al. Efficacy and toxicity of trastuzumab combined with docetaxel for Her-2/neu overexpressing metastatic breast cancer. Chinese Journal of Cancer, 2008, 27: 947‒950.

[94]

M. Entezari, F. Ghanbary. Toxicity of Manganese titanate on rat vital organ mitochondria. Iranian Journal of Pharmaceutical Research, 2019, 18: 713‒719. https://doi.org/10.22037/ijpr.2019.1100639

[95]

M.J.D. Clift, P. Gehr, B. Rothen-Rutishauser. Nanotoxicology: A perspective and discussion of whether or not in vitro testing is a valid alternative. Archives of Toxicology, 2011, 85: 723‒731. https://doi.org/10.1007/s00204-010-0560-6

[96]

C. Relier, M. Dubreuil, O. Lozano Garcia, et al. Study of TiO2 P25 nanoparticles genotoxicity on lung, blood, and liver cells in lung overload and non-overload conditions after repeated respiratory exposure in rats. Toxicological Sciences, 2017, 156: 527‒537. https://doi.org/10.1093/toxsci/kfx006

[97]

P.R. Forfia, A. Vaidya, S.E. Wiegers. Pulmonary heart disease: The heart-lung interaction and its impact on patient phenotypes. Pulmonary Circulation, 2013, 3: 5‒19. https://doi.org/10.4103/2045-8932.109910

[98]

J. Wright, A. Hutchison. Cardiovascular disease in patients with chronic kidney disease. Vascular Health and Risk Management, 2009, 5: 713‒722. https://doi.org/10.2147/vhrm.s6206

[99]

G. Fede, G. Privitera, T. Tomaselli, et al. Cardiovascular dysfunction in patients with liver cirrhosis. Annals of Gastroenterology, 2015, 28: 31‒40.

[100]

Y. Morimoto, H. Izumi, E. Kuroda. Significance of persistent inflammation in respiratory disorders induced by nanoparticles. Journal of Immunology Research, 2014. https://doi.org/10.1155/2014/962871

[101]

S.X. Gui, B.Y. Li, X.Y. Zhao, et al. Renal injury and Nrf2 modulation in mouse kidney following chronic exposure to TiO2 nanoparticles. Journal of Agricultural and Food Chemistry, 2013, 61: 8959‒8968. https://doi.org/10.1021/jf402387e

[102]

Y.L. Cui, H.T. Liu, M. Zhou, et al. Signaling pathway of inflammatory responses in the mouse liver caused by TiO2 nanoparticles. Journal of Biomedical Materials Research Part A, 2011, 96: 221‒229. https://doi.org/10.1002/jbm.a.32976

[103]

P.H. Danielsen, Y. Cao, M. Roursgaard, et al. Endothelial cell activation, oxidative stress and inflammation induced by a panel of metal-based nanomaterials. Nanotoxicology, 2015, 9: 813‒824. https://doi.org/10.3109/17435390.2014.980449

[104]

K.M.A. Hassanein, Y.O. El-Amir. Protective effects of thymoquinone and avenanthramides on titanium dioxide nanoparticles induced toxicity in Sprague-Dawley rats. Pathology-Research and Practice, 2017, 213: 13‒22. https://doi.org/10.1016/j.prp.2016.08.002

[105]

B.Y. Sha, W. Gao, S.Q. Wang, et al. Nano-titanium dioxide induced cardiac injury in rat under oxidative stress. Food and Chemical Toxicology, 2013, 58: 280‒ 288. https://doi.org/10.1016/j.fct.2013.04.050

[106]

C.E. Nichols, D.L. Shepherd, Q.A. Hathaway, et al. Reactive oxygen species damage drives cardiac and mitochondrial dysfunction following acute nano-titanium dioxide inhalation exposure. Nanotoxicology, 2018, 12: 32‒48. https://doi.org/10.1080/17435390.2017.1416202

[107]

E. Huerta-García, I. Zepeda-Quiroz, H. Sánchez-Barrera, et al. Internalization of titanium dioxide nanoparticles is cytotoxic for H9C2 rat cardiomyoblasts. Molecules, 2018, 23: 1955. https://doi.org/10.3390/molecules23081955

[108]

E.A. El-Din, H.E. Mostafa, M.A. Samak, et al. Could curcumin ameliorate titanium dioxide nanoparticles effect on the heart? A histopathological, immunohistochemical, and genotoxic study. Environmental Science and Pollution Research, 2019, 26: 21556‒21564. https://doi.org/10.1007/s11356-019-05433-2

[109]

M. Hanot-Roy, E. Tubeuf, A. Guilbert, et al. Oxidative stress pathways involved in cytotoxicity and genotoxicity of titanium dioxide (TiO2) nanoparticles on cells constitutive of alveolo-capillary barrier in vitro. Toxicology in Vitro, 2016, 33: 125‒135. https://doi.org/10.1016/j.tiv.2016.01.013

[110]

X.H. Yu, F.S. Hong, Y.Q. Zhang. Cardiac inflammation involving in PKCε or ERK1/2-activated NF-κB signalling pathway in mice following exposure to titanium dioxide nanoparticles. Journal of Hazardous Materials, 2016, 313: 68‒77. https://doi.org/10.1016/j.jhazmat.2016.03.088

[111]

M. Husain, D.M. Wu, A.T. Saber, et al. Intratracheally instilled titanium dioxide nanoparticles translocate to heart and liver and activate complement cascade in the heart of C57BL/6 mice. Nanotoxicology, 2015, 9: 1013‒1022. https://doi.org/10.3109/17435390.2014.996192

[112]

F.S. Hong, N. Wu, X.Y. Zhao, et al. Titanium dioxide nanoparticle-induced dysfunction of cardiac hemodynamics is involved in cardiac inflammation in mice. Journal of Biomedical Materials Research Part A, 2016, 104: 2917‒2927. https://doi.org/10.1002/jbm.a.35831

[113]

A.J. LeBlanc, A.M. Moseley, B.T. Chen, et al. Nanoparticle inhalation impairs coronary microvascular reactivity via a local reactive oxygen species-dependent mechanism. Cardiovascular Toxicology, 2010, 10: 27‒36. https://doi.org/10.1007/s12012-009-9060-4

[114]

P.A. Stapleton, C.E. Nichols, J.H. Yi, et al. Microvascular and mitochondrial dysfunction in the female F1 generation after gestational TiO2 nanoparticle exposure. Nanotoxicology, 2015, 9: 941‒951. https://doi.org/10.3109/17435390.2014.984251

[115]

A. Kunovac, Q.A. Hathaway, M.V. Pinti, et al. ROS promote epigenetic remodeling and cardiac dysfunction in offspring following maternal engineered nanomaterial (ENM) exposure. Particle and Fibre Toxicology, 2019, 16: 24. https://doi.org/10.1186/s12989-019-0310-8

[116]

S. Ichihara, W.H. Li, S. Omura, et al. Exposure assessment and heart rate variability monitoring in workers handling titanium dioxide particles: A pilot study. Journal of Nanoparticle Research, 2016, 18: 52. https://doi.org/10.1007/s11051-016-3340-2

[117]

S. Rossi, M. Savi, M. Mazzola, et al. Subchronic exposure to titanium dioxide nanoparticles modifies cardiac structure and performance in spontaneously hypertensive rats. Particle and Fibre Toxicology, 2019, 16: 25. https://doi.org/10.1186/s12989-019-0311-7

[118]

W. Chung, J. Song, J. Lee. The evaluation of titanium dioxide nanoparticle effects on cardiac and swimming performance of Daphnia magna. International Journal of Applied Environmental Sciences, 2016. 11(6): 1375‒1385.

[119]

B. Song, J. Liu, X.L. Feng, et al. A review on potential neurotoxicity of titanium dioxide nanoparticles. Nanoscale Research Letters, 2015, 10: 1042. https://doi.org/10.1186/s11671-015-1042-9

[120]

P.J. Winklewski, M. Radkowski, M. Wszedybyl-Winklewska, et al. Brain inflammation and hypertension: The chicken or the egg? Journal of Neuroinflammation, 2015, 12: 85. https://doi.org/10.1186/s12974-015-0306-8

[121]

I.A. Mudunkotuwa, T.R. Anthony, V.H. Grassian, et al. Accurate quantification of TiO2 nanoparticles collected on air filters using a microwave-assisted acid digestion method. Journal of Occupational and Environmental Hygiene, 2016, 13: 30‒39. https://doi.org/10.1080/15459624.2015.1072278

Publication history
Copyright
Rights and permissions

Publication history

Received: 13 July 2022
Revised: 03 November 2022
Accepted: 28 November 2022
Published: 31 December 2022
Issue date: December 2022

Copyright

© Shiva Mehran, Soroush Ghodratizadeh, Ali Zolfi-Gol, Hamed Charkhian, Mojtaba Ranjbari, Vahed ebrahimi and Zafar Gholinejad.

Rights and permissions

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return