Journal Home > Volume 14 , Issue 2

TiO2 nanoparticles were prepared by using electrochemical anodization method. UV-Vis absorption spectrum of TiO2 and TiO2: piperine nanoparticles have an absorption edge in the range of (340 -355) nm, suggesting that the TiO2 colloidal obtained is anatase phase. The band gap energy (Eg) for TiO2 nanoparticles (3.46 eV) is higher than the value of (3.20 eV) for bulk TiO2. X-Ray diffraction results for TiO2 nanoparticles with a wavelength of 1.54 Å were investgation in this work. Planes (101), (200), (111), (220), (210), (211), (105), (220), (310), (221), and (220) crystal planes all had peaks with the lattice constants a = 3.755 Å and c = 9.5114 Å confirms the anatase phases of the TiO2 nanoparticles according to the JCPDS file 21-127231. Scanning Electron Microscope images of TiO2 samples in revealed the prevalence spherical nanosized crystallites, where clear nanostructures with a grain size of 15 nm. In TEM image, the shape of the nanoparticles was spherecial, with small size variance and found to be 15 nm. The EDX study of the nanoparticle reflects the atomic percentage of elements such as Ti and O with a ratio of 83:17 and no other peaks are observed this confirm the presence of TiO2 nanoparticles.


menu
Abstract
Full text
Outline
About this article

Piperine Loaded Titanium Dioxide Nanoparticles: Development, Characterisation and Biomedical Application

Show Author's information Ahmed Talib Yassen1Khalisa K. Khudair2Mrwaa Abdul Muhsien Hassan3( )
Department of Physiology / College of Medicine / University of Anbar, Iraq
Department of Physiology, Biochemistry and Pharmacollogyl / College of Veterinary Medicine / University of Baghdad, Iraq
Department of Physics / College of Science / Mustansiriyah University / Baghdad, Iraq

Abstract

TiO2 nanoparticles were prepared by using electrochemical anodization method. UV-Vis absorption spectrum of TiO2 and TiO2: piperine nanoparticles have an absorption edge in the range of (340 -355) nm, suggesting that the TiO2 colloidal obtained is anatase phase. The band gap energy (Eg) for TiO2 nanoparticles (3.46 eV) is higher than the value of (3.20 eV) for bulk TiO2. X-Ray diffraction results for TiO2 nanoparticles with a wavelength of 1.54 Å were investgation in this work. Planes (101), (200), (111), (220), (210), (211), (105), (220), (310), (221), and (220) crystal planes all had peaks with the lattice constants a = 3.755 Å and c = 9.5114 Å confirms the anatase phases of the TiO2 nanoparticles according to the JCPDS file 21-127231. Scanning Electron Microscope images of TiO2 samples in revealed the prevalence spherical nanosized crystallites, where clear nanostructures with a grain size of 15 nm. In TEM image, the shape of the nanoparticles was spherecial, with small size variance and found to be 15 nm. The EDX study of the nanoparticle reflects the atomic percentage of elements such as Ti and O with a ratio of 83:17 and no other peaks are observed this confirm the presence of TiO2 nanoparticles.

Keywords: Optical properties, TiO2, SEM, TiO2: piperine

References(37)

[1]
Zeynep Busra Bolat, Zeynep Islek, Bilun Nas Demir, Elif Nur Yilmaz, Fikrettin Sahin and Mehmet Hikmet Ucisik, Curcumin- and Piperine-Loaded Emulsomes as Combinational Treatment Approach Enhance the Anticancer Activity of Curcumin on HCT116 Colorectal Cancer Model, Front. Bioeng. Biotechnol., 2020, 11 February.
[2]

W. Li, Chaoying Ni, Hangyu Lin, C.P. Huang and Syed Ismat Shah, Size Dependence of Thermal Stability of TiO2 Nanoparticles. Journal of Applied Physics, 2004, 96(11): 6663.

[3]

Hengzhong Zhang and Jillian F. Banfield. New kinetic model for the nanocrystalline anatase-torutile transformation revealing rate dependence on number of particles. Am. Mineral. 1999, 84: 528.

[4]

Athanassios Tsevis, Nikos Spanos, Petros G. Koutsoukos, Ab J. van der Linde and Johannes Lyklema. Preparation and characterization of anatase powders. J. Chem. Soc., Faraday Trans, 1998, 94(2): 295.

[5]
M.R. Ranade, A. Navrotsky, H.Z. Zhang, J.F. Banfield, S.H. Elder, A. Zaban, P.H. Borse, S.K. Kulkarni, G.S. Doran and H.J. Whitfield, (Energetics of nanocrystalline TiO2) PNAS99, 2002: 6476.
DOI
[6]

J. Arbiol, J. Cerda, G. Dezanneau, A. Cirera, F. Peiro, A. Cornet and J.R. Mornate, (Effects of Nb doping on the TiO2 anatase-to-rutile phase transition). Journal Of Applied Physics. 2002, 92: 853.

[7]

Kazuya Nakataa, Tsuyoshi Ochiaia, Taketoshi Murakamia, Akira Fujishimaa, Photoenergy conversion with TiO2 photocatalysis: new materials and recent applications, Electrochim. Acta, 2012, 84: 103-111.

[8]

Wenjuan Tan, Jose R. Peralta-Videa and Jorge L. Gardea-Torresdey Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs–a critical review, Environ. Sci. J. Integr. Environ. Res. Nano. 2018, 5(2): 257-278.

[9]

Wenzhang Fang, Mingyang Xing, Jinlong Zhang, Modifications on reduced titanium dioxide photocatalysts: a review, J. Photochem. Photobiol. C Photochem. Rev. 2017, 32: 21-39.

[10]

Chouirfa H., Bouloussa H., Migonney V., Falentin-Daudré C., Review of titanium surface modification techniques and coatings for antibacterial applications, Acta Biomater. 2019, 83: 37-54.

[11]

Adawiyah J. Haider, Zainab N. Jameel, Imad H. Al-Hussaini, Review on: titanium dioxide applications, Energy Procedia, 2019, 157: 17-29.

[12]

Maja Vujovic, Emilija Kostic, Titanium dioxide and zinc oxide nanoparticles in Sunscreens: a review of toxicological data, J. Cosmet. Sci., 2019, 70(5): 223-234.

[13]
Grande, F., Tucci, P. Titanium dioxide nanoparticles: a risk for human Health Mini Rev. Med. Chem. 2016, 16: 762-769.
DOI
[14]

Shi, J., Yang, D., Jiang, Z., Jiang, Y., Liang, Y., Zhu, Y. Simultaneous size control and surface functionalization of titania nanoparticles through bioadhesion-assisted bio-inspired mineralization. J. Nanopart. Res., 2012, 14(9): 1120.

[15]

Narkevica, I., Stradina, L., Stipniece, L., Jakobsons, E., Ozolins, J. Electrophoretic deposition of nanocrystalline TiO2 particles on porous TiO2-X ceramic scaffolds for biomedical applications. J. Eur. Ceram. Soc., 2017, 37(9): 3185-3193.

[16]

Mollavali, M., Falamaki, C., Rohani, S. Efficient light harvesting by NiS/CdS/ZnS NPs incorporated in C, N-co-doped-TiO2 nanotube arrays as visible-light sensitive multilayer photoanode for solar applications. Int. J. Hydrog. Energy, 2018, 43: 9259-9278.

[17]

Pant, B., Park, M., Park, S.J. TiO2 NPs assembled into a carbon nanofiber composite electrode by a one-step electrospinning process for supercapacitor applications. Polymers, 2019, 11(5): 899.

[18]

Irshad, M.A., Nawaz, R., ur Rehman, M.Z., Imran, M., Ahmad, M.J., Ahmad, S., Ali, S. Synthesis and characterization of titanium dioxide nanoparticles by chemical and green methods and their antifungal activities against wheat rust. Chemosphere, 2020, 258: 127352.

[19]

Muhammad Atif Irshad, Rab Nawaz, Muhammad Zia ur Rehman, MuhammadAdrees, Muhammad Rizwan, Shafaqat Ali a. d., Sajjad Ahmad, Sehar Tasleem, Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: A review. Ecotoxicology and Environmental Safety, 212(2021): 111978.

[20]

Sharma, R., Sarkar, A., Jha, R., Kumar Sharma, A., Sharma, D. Sol-gel-mediated synthesis of TiO2 nanocrystals: structural, optical, and electrochemical properties. Int. J. Appl. Ceram. Technol., 2020, 17(3): 1400-1409.

[21]

Ramakrishnan, V.M., Natarajan, M., Santhanam, A., Asokan, V., Velauthapillai, D. Size controlled synthesis of TiO2 nanoparticles by modified solvothermal method towards effective photo catalytic and photovoltaic applications. Mater. Res. Bull., 2018, 97: 351-360.

[22]

Horti, N., Kamatagi, M., Patil, N., Nataraj, S., Sannaikar, M., Inamdar, S. Synthesis and photoluminescence properties of titanium oxide (TiO2) nanoparticles: effect of calcination temperature. Optik, 2019, 194: 163070.

[23]

Wang, Z., Haidry, A.A., Xie, L., Zavabeti, A., Li, Z., Yin, W., Fomekong, R.L., Saruhan, B. Acetone sensing applications of Ag modified TiO2 porous nanoparticles synthesized via facile hydrothermal method. Appl. Sur. Sci. , 2020, 533: 147383.

[24]

Subhapriya, S., Gomathipriya, P. Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb. Pathog. , 2018, 116: 215-220.

[25]

Abisharani, J.M., Devikala, S., Kumar, R.D., Arthanareeswari, M., Kamaraj, P. Green synthesis of TiO2 nanoparticles using Cucurbita pepo seeds extract. Mater Today Proc., 2019, 14: 302-307.

[26]

Irshad, M.A., Nawaz, R., Ur Rehman, M.Z., Imran, M., Ahmad, M.J., Ahmad, S., Ali, S. Synthesis and characterization of titanium dioxide nanoparticles by chemical and green methods and their antifungal activities against wheat rust. Chemosphere, 2020, 258: 127352.

[27]
Marwa Abdul Muhsien Hassan, Abdul Kader S. Abdul Kader and Rana Ismael Khaleel, Construction of Nanobiomaterials using Chemical Method, IOP Conf. Series: Materials Science and Engineering, 928(2020): 072067.
DOI
[28]

Esfahani, R.N., Khaghani, S., Azizi, A., Mortazaeinezhad, F., Gomarian, M. Facile and eco-friendly synthesis of TiO2 NPs using extracts of Verbascum thapsus plant: an efficient photocatalyst for reduction of Cr(Ⅵ) ions in the aqueous solution. J. Iran. Chem. Society, 2020, 17(1): 205-213.

[29]

Goutam, S.P., Saxena, G., Singh, V., Yadav, A.K., Bharagava, R.N., Thapa, K.B. Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem. Eng. J. , 2018, 336: 386-396.

[30]

Pal, S., Tak, Y.K., Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. , 2007, 73(6): 1712-1720.

[31]

Gugliotti, L.A., Feldheim, D.L., Eaton, B.E. RNA-mediated control of metal nanoparticle shape. J. Am. Chem. Soc., 2005, 127: 17814-17818.

[32]

Schuler, E., Gustavsson, A.K., Hertenberger, S., Sattler, K. Solar photocatalytic and electrokinetic studies of TiO2/Ag nanoparticle suspensions. Sol. Energy, 2013, 96: 220-226.

[33]

Yeganeh-Faal, A., Bordbar, M., Negahdar, N., Nasrollahzadeh, M. Green synthesis of the Ag/ZnO nanocomposite using Valeriana officinalis L. root extract: application as a reusable catalyst for the reduction of organic dyes in a very short time. IET Nanobiotechnol, 2017, 11: 669-676.

[34]

Fatimah Al Qarni, Nuhad A. Alomair and Hanan H. Mohamed Environment-Friendly Nanoporous Titanium Dioxide with Enhanced Photocatalytic Activity. Catalysts, 2019, 9: 799; doi: 10.3390/catal9100799.

[35]

Maar, R.R., Zhang, R., Stephens, D.G., Ding, Z., Gilroy, J.B. Near-infrared photoluminescence and electrochemiluminescence from a remarkably simple boron difluoride formazanate dye. Angew. Chem. Int. Ed., 2019, 58 (4): 1052-1056.

[36]

Solano, R.A., Herrera, A.P., Maestre, D., Cremades, A. Fe-TiO2 nanoparticles synthesized by green chemistry for potential application in waste water photocatalytic treatment. J. Nanotechnol. , 2019: 1-11.

[37]

Sethy, N.K., Arif, Z., Mishra, P.K., Kumar, P. Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater. Green Process. Synth. , 2020, 9(1): 171-181.

Publication history
Copyright
Rights and permissions

Publication history

Received: 27 September 2021
Accepted: 10 October 2022
Published: 17 November 2022
Issue date: June 2022

Copyright

© Ahmed Talib Yassen, Khalisa K. Khudair, and Mrwaa Abdul Muhsien Hassan.

Rights and permissions

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Return