Journal Home > Volume 5 , Issue 1

The structure of fractures and pores has a dominant impact on the heat transfer-seepage-deformation process of a coal seam. Previous models have primarily used the cubic permeability model to characterize coal seam permeability properties. In this study, we developed a new multi-field coupling model, which includes fracture and pore structure, coal seam temperature, effective stress and gas seepage. Two major extraction scenarios were simulated: the unconstrained plane strain state and the uniaxial plane strain state. In addition, two microstructural parameters were applied to characterize coal permeability: the maximum fracture length and the fractal dimension for the fracture. The results show that the fractal seepage model provides a more realistic and reliable characterization of resource migration and extraction processes in unconventional reservoirs than the cubic-law permeability model. Compared with the cubic-law permeability model, the permeability calculated by the model proposed in this paper changes about 17.09%-91.56%. Furthermore, coal seam permeability is proportional to the maximum fracture length and the fractal dimension for the fracture. The permeability changes about 17.09% and 17.18% with the different fractal dimension, and about 87.17% and 91.56% with the different maximum fracture length. However, the fractal dimension and coal seam permeability are inversely proportional to seam temperature.


menu
Abstract
Full text
Outline
About this article

A multi-field coupling model of gas flow in fractured coal seam

Show Author's information Dayu Ye1,2Guannan Liu1,2,3( )Feng Gao1,2,3Rongguang Xu4Fengtian Yue2,3
State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, P. R. China
Mechanics and Civil Engineering Institute, China University of Mining and Technology, Xuzhou 221116, P. R. China
Laboratory of Mine Cooling and Coal-heat Integrated Exploitation, China University of Mining and Technology, Xuzhou 221116, P. R. China
Department of Mechanical and Aerospace Engineering, The George Washington University, Washington 20052, USA

Abstract

The structure of fractures and pores has a dominant impact on the heat transfer-seepage-deformation process of a coal seam. Previous models have primarily used the cubic permeability model to characterize coal seam permeability properties. In this study, we developed a new multi-field coupling model, which includes fracture and pore structure, coal seam temperature, effective stress and gas seepage. Two major extraction scenarios were simulated: the unconstrained plane strain state and the uniaxial plane strain state. In addition, two microstructural parameters were applied to characterize coal permeability: the maximum fracture length and the fractal dimension for the fracture. The results show that the fractal seepage model provides a more realistic and reliable characterization of resource migration and extraction processes in unconventional reservoirs than the cubic-law permeability model. Compared with the cubic-law permeability model, the permeability calculated by the model proposed in this paper changes about 17.09%-91.56%. Furthermore, coal seam permeability is proportional to the maximum fracture length and the fractal dimension for the fracture. The permeability changes about 17.09% and 17.18% with the different fractal dimension, and about 87.17% and 91.56% with the different maximum fracture length. However, the fractal dimension and coal seam permeability are inversely proportional to seam temperature.

Keywords: gas sorption, Fractal, coal permeability, coal microstructure, thermal conduction

References(36)

Arand, F., Hesser, J. Accurate and efficient maximal ball algorithm for pore network extraction. Computers & Geosciences, 2017, 101: 28-37.
Au, P. I., Liu, J., Leong, Y. K. Yield stress and microstructure of washed oxide suspensions at the isoelectric point: Experimental and model fractal structure. Rheologica Acta, 2016, 55(10): 847-856.
Barton, C. C., Hsieh, P. A. Physical and hydrologic-flow properties of fractures. Paper Presented at 28th International Geological Congress, Washington DC, 9-19 July, 1989.
Bustin, R. M., Clarkson, C. R. Geological controls on coalbed methane reservoir capacity and gas content. International Journal of Coal Geology, 1998, 38(1-2): 3-26.
Cai, J., Wei, W., Hu, X., et al. Fractal characterization of dynamic fracture network extension in porous media. Fractals, 2017, 25 (2): 1750023.
Cai, Y., Liu, D., Pan, Z. Partial coal pyrolysis and its implication to enhance coalbed methane recovery: A simulation study. Energy & Fuels, 2017, 31(5): 4895-4903.
Cui, X., Bustin, R. M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams. AAPG Bulletin, 2005, 89(9): 1181-1202.
Durucan, S., Ahsanb, M., Shia, J. Q. Matrix shrinkage and swelling characteristics of European coals. Energy Procedia, 2009, 1(1): 3055-3062.
Harpalani, S., Schraufnagel, R. A. Shrinkage of coal matrix with release of gas and its impact on permeability of coal. Fuel, 1990, 69(5): 551-556.
He, J., Zhang, Y., Li, X., et al. Experimental investigation on the fractures induced by hydraulic fracturing using freshwater and supercritical CO2 in shale under uniaxial stress. Rock Mechanics and Rock Engineering, 2019, 52(10): 3585-3596.
Jafari, A., Babadagli, T. Estimation of equivalent fracture network permeability using fractal and statistical network properties. Journal of Petroleum Science and Engineering, 2012, 92: 110-123.
Kulatilake, P., Shou, G., Huang, T. H., et al. New peak shear strength criteria for anisotropic rock joints. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1995, 32(7): 673-697.
Li W., Liu J., Zeng J., et al. A fully coupled multidomain and multiphysics model for evaluation of shale gas extraction. Fuel, 2020, 278: 118214.
Li, Z., Duan, Y., Fang, Q., et al. A study of relative permeability for transient two-phase flow in a low permeability fractal porous medium. Advances in Geo-Energy Research, 2018, 2(4): 369-379.
Liang, B. Study on temperature effects on the gas absorption performance. Journal of Heilongjiang Mining Institute, 2000, 10(1): 20-22. (in Chinese)
Liu, G., Liu, J., Liu, L., et al. A fractal approach to fully-couple coal deformation and gas flow. Fuel, 2019, 240: 219-236.
Liu, G., Ye, D., Gao, F., et al. A dual fractal poroelastic model for characterizing fluid flow in fractured coal masses. Geofluids, 2020, 2020: 2787903.
Liu, G., Yu, B., Gao, F., et al. Analysis of permeability evolution characteristics based on dual fractal coupling model for coal seam. Fractals, 2020, 28(7): 2050133.
Liu, G., Yu, B., Ye, D., et al. Study on evolution of fractal dimension for fractured coal seam under multi field coupling. Fractals, 2020, 28(4): 2050072.
McTigue, D. F. Thermoelastic response of fluid-saturated porous rock. Journal of Geophysical Research Atmospheres, 1986, 91(B9): 9533-9542.
Miao, T., Yang, S., Long, Z., et al. Fractal analysis of permeability of dual-porosity media embedded with random fractures. International Journal of Heat and Mass Transfer, 2015, 88: 814-821.
Miao, T., Yu, B., Duan, Y., et al. A fractal analysis of permeability for fractured rocks. International Journal of Heat and Mass Transfer, 2015, 81: 75-80.
Ni, X., Gong, P., Xue, Y. Numerical investigation of complex thermal coal-gas interactions in coal-gas migration. Advances in Civil Engineering, 2018, 2018: 9020872.
Øren, P. E., Bakke, S. Process based reconstruction of sandstones and prediction of transport properties. Transport in Porous Media, 2002, 46(2): 311-343.
Palmer, I. Permeability changes in coal: Analytical modeling. International Journal of Coal Geology, 2009, 77(1-2): 119-126.
Palmer, I., Mansoori, J. How permeability depends on stress and pore pressure in coalbeds: A new model. Paper SPE 36737 Presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, 6-9 October, 1996.
Qin, X., Zhou, Y., Sasmito, A. P. An effective thermal conductivity model for fractal porous media with rough surfaces. Advances in Geo-Energy Research, 2019, 3(2): 149-155.
Raeini, A. Q., Bijeljic, B., Blunt, M. J. Generalized network modeling: Network extraction as a coarse-scale discretization of the void space of porous media. Physical Review E, 2017, 96(1): 013312.
Tong, F., Jing, L., Zimmerman, R. W. A fully coupled thermo-hydro-mechanical model for simulating multiphase flow, deformation and heat transfer in buffer material and rock masses. International Journal of Rock Mechanics & Mining Sciences, 2010, 47(2): 205-217.
Wang, D., Lv, R., Wei, J., et al. An experimental study of the anisotropic permeability rule of coal containing gas. Journal of Natural Gas Science and Engineering, 2018, 53: 67-73.
Wang, H., Xue, S., Shi, R., et al. Investigation of fault displacement evolution during extraction in longwall panel in an underground coal mine. Rock Mechanics and Rock Engineering, 2020, 53(4): 1809-1826.
Yu, B., Lee, L. J., Cao, H. A fractal in-plane permeability model for fabrics. Polymer Composites, 2002, 23(2): 201-221.
Yu, B., Li, J. Some fractal characters of porous media. Fractals, 2001, 9(3): 365-372.
Zeng, J., Liu, J., Li, W., et al. Evolution of shale permeability under the influence of gas diffusion from the fracture wall into the matrix. Energy & Fuels, 2020, 34(4): 4393-4406.
Zhang, H., Liu, J., Elsworth, D. How sorption-induced matrix deformation affects gas flow in coal seams: A new FE model. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(8): 1226-1236.
Zhu, W., Wei, C., Liu, J., et al. A model of coal-gas interaction under variable temperatures. International Journal of Coal Geology, 2011, 86(2-3): 213-221.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 25 February 2021
Revised: 08 March 2021
Accepted: 09 March 2021
Published: 12 March 2021
Issue date: March 2021

Copyright

© The Author(s) 2021

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (No. 2020ZDPYMS02).

Rights and permissions

This article is distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return