Journal Home > Volume 4 , Issue 2

Cooling down the cargo tanks of liquefied natural gas carriers (LNGC) prior to the ships arrival at discharge and loading ports follow various widely adopted operating procedures. The tank cool-down procedures typically followed cannot though be considered as best practice, because they consume considerable boil-off gas while reducing tank temperatures. An alternative tested method, described here, consumes considerably less liquefied natural gas (LNG) during the tank cool-down process, which is beneficial, particularly during the ballast voyages. In certain circumstances, LNGC consume liquid marine fuels so that they are able to preserve enough LNG heel to complete tank cool down at sea to required low temperatures before reloading can be commenced. The novel method devised for cooling down LNGC, particularly those fitted with membrane cargo tanks, at sea prior to arrival at a loading terminal involves much lower LNG heel consumption than conventional methods. The boil-off gas (BOG)-balanced tank-cool-down method applies continuous spraying, at very low rates, of the tanks with LNG extracted from the heel. This procedure enables the ship's engines to consume all excess BOG without the need to pass some of it as waste for combustion in the gas combustion unit or steam dump. It also ensures that the LNG cargo tanks are maintained at stable and constant pressure and reduces the coolant LNG quantity consumed. The BOG-balanced tank-cool-down is straightforward to implement and monitor, simplifying tank pressure control. Test results demonstrate that tank cool-down rates of 4 to 5 ℃/per hour can be maintained such that tank temperatures can be reduced from +30 to -130 ℃ within 37 hours. The method could work on LNGC with Moss-type tanks but is likely to be less effective as they are typically fitted with fewer tank spraying nozzles.


menu
Abstract
Full text
Outline
About this article

Boil-off gas balanced method of cool down for liquefied natural gas tanks at sea

Show Author's information Maksym Kulitsa1David A. Wood2 ( )
Independent FSRU Operations Consultant Odessa, Ukraine
DWA Energy Limited, Lincoln, United Kingdom

Abstract

Cooling down the cargo tanks of liquefied natural gas carriers (LNGC) prior to the ships arrival at discharge and loading ports follow various widely adopted operating procedures. The tank cool-down procedures typically followed cannot though be considered as best practice, because they consume considerable boil-off gas while reducing tank temperatures. An alternative tested method, described here, consumes considerably less liquefied natural gas (LNG) during the tank cool-down process, which is beneficial, particularly during the ballast voyages. In certain circumstances, LNGC consume liquid marine fuels so that they are able to preserve enough LNG heel to complete tank cool down at sea to required low temperatures before reloading can be commenced. The novel method devised for cooling down LNGC, particularly those fitted with membrane cargo tanks, at sea prior to arrival at a loading terminal involves much lower LNG heel consumption than conventional methods. The boil-off gas (BOG)-balanced tank-cool-down method applies continuous spraying, at very low rates, of the tanks with LNG extracted from the heel. This procedure enables the ship's engines to consume all excess BOG without the need to pass some of it as waste for combustion in the gas combustion unit or steam dump. It also ensures that the LNG cargo tanks are maintained at stable and constant pressure and reduces the coolant LNG quantity consumed. The BOG-balanced tank-cool-down is straightforward to implement and monitor, simplifying tank pressure control. Test results demonstrate that tank cool-down rates of 4 to 5 ℃/per hour can be maintained such that tank temperatures can be reduced from +30 to -130 ℃ within 37 hours. The method could work on LNGC with Moss-type tanks but is likely to be less effective as they are typically fitted with fewer tank spraying nozzles.

Keywords: Reducing wastage of BOG, cooling tanks in LNG carriers, fuel efficiency, tank cool-down strategies, continuous slow-rate tank spraying, minimizing LNG heel

References(16)

Cao, J., Zhang, X., Zou, X. Pressure control of insulation space for liquefied natural gas carrier with nonlinear feedback technique. J. Mar. Sci. Eng. 2018, 6(4): 133.

Choi, J. Development of partial liquefaction system for liquefied natural gas carrier application using exergy analysis. Int. J. Nav. Archit. Ocean Eng. 2018, 10(5): 609-616.

DNV-GL. EU MRV and IMO DCS, 2019.

Dobrota, D., Lalić, B., Komar, I. Problem of boil-off in LNG supply chain. Trans. Marit. Sci. 2013, 2(2): 91-100.

Głomski, P., Michalski, R. Problems with determination of evaporation rate and properties of boil-off gas on board LNG carriers. J. Pol. CIMAC 2011, 6(1): 133-140.

Grotle, E.L., Esoy, V. Dynamic modelling of the thermal response enhanced by sloshing in marine LNG fuel tanks. Appl. Therm. Eng. 2018, 135(5): 512-520.

ICS-Shipping. European Union Monitoring, reporting and verification (EU MRV) regulation, 2015.

Kulitsa, M., Wood, D.A. Duality in LNG tank-pressure behaviour and its relevance for ship-to-ship transfers to floating storage and regasification units (FSRU). Adv. Geo-Energy Res. 2020, 4(1): 54-76.

Li, Y., Chen, X., Chein, M.H. Flexible and cost-effective optimization of BOG (boil-off gas) recondensation process at LNG receiving terminals. Chem. Eng. Res. Des. 2012, 90(10): 1500-1505.

MEPC. Guidelines for the development of a ship energy efficiency management plan (SEEMP), 2016.

Migliore, C., Tubilleja, C., Vesovic, V. Weathering prediction model for stored 850 liquefied natural gas (LNG). J. Nat. Gas Sci. Eng. 2015, 26: 570-580.

Mokhatab, S., Mak, J.Y., Valappil, J.V., et al. Handbook of Liquefied Natural Gas. Oxford, UK, Gulf Professional Publishing, 2014.

Pellegrini, L.A., Moioli, S., Brignoli, F., et al. LNG technology: The weathering in above-ground storage tanks. Ind. Eng. Chem. Res. 2014, 53(10): 3931-3937.

Shin, Y., Lee, Y.P. Design of a boil-off natural gas reliquefaction control system for LNG carriers. Appl. Energy 2009, 86(1): 37-44.

Wood, D.A., Kulitsa, M. A review: Optimizing performance of floating storage and regasification units (FSRU) by applying advanced LNG tank pressure management strategies. Int. J. Energy Res. 2018a, 42(4): 1391-1418.

Wood, D.A., Kulitsa, M. Weathering/ageing of LNG cargoes during marine transport and processing on FSU and FSRU. J. Energy Resour. Technol. 2018b, 140(10): 102901.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 06 May 2020
Revised: 12 May 2020
Accepted: 12 May 2020
Published: 16 May 2020
Issue date: June 2020

Copyright

© The Author(s) 2020

Acknowledgements

Acknowledgement

This work benefited from observations recorded during multiple LNGC voyages.

Rights and permissions

This article, published at Ausasia Science and Technology Press on behalf of the Division of Porous Flow, Hubei Province Society of Rock Mechanics and Engineering, is distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return