Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Quantum computing is generally considered non-threatening to symmetric ciphers. Quantum attacks on symmetric ciphers require a thorough analysis of their internal structures, posing considerable difficulties and challenges. As of 2023, Google’s quantum supremacy chip, Sycamore, is still incapable of cryptanalysis. Leveraging D-Wave’s quantum annealing exploits the unique quantum tunneling effect, providing an edge in solving combinatorial optimization problems. It can be regarded as a class of artificial intelligence algorithm that can achieve global optimization. We propose a quantum heuristic symmetric cipher attack algorithm for substitution-permutation network (SPN) symmetric ciphers, which transforms the plaintext-ciphertext propagation rules within SPN structure into the problem of solving a constrained quadratic model (CQM). A novel reduction algorithm is employed to eliminate redundant constraint conditions. The D-Wave Advantage quantum computer is used to recover the encryption sub-keys. Using the quantum approximate optimization algorithm, IBM Q Experience can only recover two rounds of the Heys Cipher sub-key, whereas D-Wave Advantage achieves complete key recovery, validating its potential in quantum symmetric cipher attacks.
Google Quantum AI, Suppressing quantum errors by scaling a surface code logical qubit, Nature, vol. 614, no. 7949, pp. 676–681, 2023.
D. R. Simon, On the power of quantum computation, SIAM J. Comput., vol. 26, no. 5, pp. 1474–1483, 1997.
Y. Y. Luo, H. L. Yan, L. Wang, H. G. Hu, and X. B. Lai, Study on block cipher structures against Simon’s quantum algorithm, (in Chinese), J. Cryptol. Res., vol. 6, no. 5, pp. 561–573, 2019.
J. Preskill, Quantum computing in the NISQ era and beyond, Quantum, vol. 2, p. 79, 2018.
Z. Wang, S. Wei, G. L. Long, and L. Hanzo, Variational quantum attacks threaten advanced encryption standard based symmetric cryptography, Sci. China Inf. Sci., vol. 65, no. 10, p. 200503, 2022.
R. D. Somma, D. Nagaj, and M. Kieferová, Quantum speedup by quantum annealing, Phys. Rev. Lett., vol. 109, no. 5, p. 050501, 2012.
S. Morita and H. Nishimori, Convergence theorems for quantum annealing, J. Phys. A: Math. Gen., vol. 39, no. 45, p. 13903, 2006.
A. D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A. J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, et al., Quantum critical dynamics in a 5,000-qubit programmable spin glass, Nature, vol. 617, no. 7959, pp. 61–66, 2023.
C. Wang and H. Zhang, Impact of Canadian commercial quantum computers on cryptography, (in Chinese), Inf. Secur. Commun. Priv., no. 2, pp. 31–32&35, 2012.
B. Wang, F. Hu, H. Zhang, and C. Wang, From evolutionary cryptography to quantum artificial intelligent cryptography, (in Chinese), J. Comput. Res. Dev., vol. 56, no. 10, pp. 2112–2134, 2019.
W. Peng, B. Wang, F. Hu, Y. Wang, X. Fang, X. Chen, and C. Wang, Factoring larger integers with fewer qubits via quantum annealing with optimized parameters, Sci. China Phys. Mech. Astron., vol. 62, no. 6, p. 60311, 2019.
B. Wang, F. Hu, H. Yao, and C. Wang, Prime factorization algorithm based on parameter optimization of Ising model, Sci. Rep., vol. 10, no. 1, p. 7106, 2020.
C. Hong, Z. Pei, Q. Wang, S. Yang, J. Yu, and C. Wang, Quantum attack on RSA by D-Wave Advantage: A first break of 80-bit RSA, Sci. China Inf. Sci., vol. 68, no. 2, p. 129501, 2025.
A. B. Finnila, M. A. Gomez, C. Sebenik, C. Stenson, and J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions, Chem. Phys. Lett., vol. 219, nos. 5–6, pp. 343–348, 1994.
Z. Bian, F. Chudak, W. Macready, A. Roy, R. Sebastiani, and S. Varotti, Solving SAT (and MaxSAT) with a quantum annealer: Foundations, encodings, and preliminary results, Inf. Comput., vol. 275, p. 104609, 2020.
M. H. Amin, Searching for quantum speedup in quasistatic quantum annealers, Phys. Rev. A, vol. 92, no. 5, p. 052323, 2015.
S. Mukherjee and B. K. Chakrabarti, Multivariable optimization: Quantum annealing and computation, Eur. Phys. J. Spec. Top., vol. 224, no. 1, pp. 17–24, 2015.
H. M. Heys, A tutorial on linear and differential cryptanalysis, Cryptologia, vol. 26, no. 3, pp. 189–221, 2002.
A. Glos, A. Kundu, and Ö. Salehi, Optimizing the production of test vehicles using hybrid constrained quantum annealing, SN Comput. Sci., vol. 4, no. 5, p. 609, 2023.
134
Views
13
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).