AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (14.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Exploring Pathogenic Mutation in Allosteric Proteins: The Prediction and Beyond

College of Mathematics and Information, South China Agriculture University, Guangzhou 510640, China
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Show Author Information

Abstract

In the post-genomic era, a central challenge for disease genomes is the identification of the biological effects of specific somatic variants on allosteric proteins and the phenotypes they influence during the initiation and progression of diseases. Here, we analyze more than 38539 mutations observed in 90 human genes with 740 allosteric protein chains. We find that existing allosteric protein mutations are associated with many diseases, but the clinical significance of most mutations in allosteric proteins remains unclear. Next, we develop an ensemble-learning-based model for pathogenic mutation prediction of allosteric proteins based on the intrinsic characteristics of proteins and the prediction results from existed methods. When tested on the benchmark allosteric protein dataset, the proposed method achieves an AUCs of 0.868 and an AUPR of 0.894 on allosteric proteins. Furthermore, we explore the performance of existing methods in predicting the pathogenicity of mutations at allosteric sites and identify potential significant pathogenic mutations at allosteric sites using the proposed method. In summary, these findings illuminate the significance of allosteric mutation in disease processes, and contribute a valuable tool for the identification of pathogenic mutations as well as previously unknown disease-causing allosteric-protein-encoded genes.

Electronic Supplementary Material

Download File(s)
TST-2024-0511_ESM.pdf (445.1 KB)

References

[1]

V. J. Hilser, J. O. Wrabl, and H. N. Motlagh, Structural and energetic basis of allostery, Annu. Rev. Biophys., vol. 41, pp. 585–609, 2012.

[2]

R. Nussinov and C. J. Tsai, Allostery in disease and in drug discovery, Cell, vol. 153, no. 2, pp. 293–305, 2013.

[3]

K. Gunasekaran, B. Ma, and R. Nussinov, Is allostery an intrinsic property of all dynamic proteins, Proteins, vol. 57, no. 3, pp. 433–443, 2004.

[4]

M. Arciniega, P. Beck, O. F. Lange, M. Groll, and R. Huber, Differential global structural changes in the core particle of yeast and mouse proteasome induced by ligand binding, Proc. Natl. Acad. Sci. USA, vol. 111, no. 26, pp. 9479–9484, 2014.

[5]

R. Nussinov, C. J. Tsai, F. Xin, and P. Radivojac, Allosteric post-translational modification codes, Trends Biochem. Sci., vol. 37, no. 10, pp. 447–455, 2012.

[6]

A. N. Naganathan, Modulation of allosteric coupling by mutations: From protein dynamics and packing to altered native ensembles and function, Curr. Opin. Struct. Biol., vol. 54, pp. 1–9, 2019.

[7]

G. P. Lisi and J. P. Loria, Allostery in enzyme catalysis, Curr. Opin. Struct. Biol., vol. 47, pp. 123–130, 2017.

[8]

S. Willems, L. Gellrich, A. Chaikuad, S. Kluge, O. Werz, J. Heering, S. Knapp, S. Lorkowski, M. Schubert-Zsilavecz, and D. Merk, Endogenous vitamin E metabolites mediate allosteric PPARγ activation with unprecedented co-regulatory interactions, Cell Chem. Biol., vol. 28, no. 10, pp. 1489–1500.e8, 2021.

[9]

J. Chen, J. Yang, Q. Wei, L. Weng, F. Wu, Y. Shi, X. Cheng, X. Cai, C. Hu, and P. Cao, Identification of a selective inhibitor of IDH2/R140Q enzyme that induces cellular differentiation in leukemia cells, Cell Commun. signal., vol. 18, no. 1, p. 55, 2020.

[10]

M. Bouskila, R. W. Hunter, A. F. M. Ibrahim, L. Delattre, M. Peggie, J. A. Van Diepen, P. J. Voshol, J. Jensen, and K. Sakamoto, Allosteric regulation of glycogen synthase controls glycogen synthesis in muscle, Cell Metab., vol. 12, no. 5, pp. 456–466, 2010.

[11]

E. J. Lang, P. J. Cross, G. Mittelstädt, G. B. Jameson, and E. J. Parker, Allosteric ACTion: The varied ACT domains regulating enzymes of amino-acid metabolism, Curr. Opin. Struct. Biol., vol. 29, pp. 102–111, 2014.

[12]

H. F. Nijhout, J. A. Best, and M. C. Reed, Systems biology of robustness and homeostatic mechanisms, WIREs Syst. Biol. Med., vol. 11, no. 3, p. e1440, 2019.

[13]

A. W. Fenton, Allostery: An illustrated definition for the ‘second secret of life’, Trends Biochem. Sci., vol. 33, no. 9, pp. 420–425, 2008.

[14]

J. P. Changeux and A. Christopoulos, Allosteric modulation as a unifying mechanism for receptor function and regulation, Cell, vol. 166, no. 5, pp. 1084–1102, 2016.

[15]

C. J. Wenthur, P. R. Gentry, T. P. Mathews, and C. W. Lindsley, Drugs for allosteric sites on receptors, Annu. Rev. Pharmacol. Toxicol., vol. 54, pp. 165–184, 2014.

[16]

K. A. Konovalov, C. G. Wu, Y. Qiu, V. K. Balakrishnan, P. S. Parihar, M. S. O’Connor, Y. Xing, and X. Huang, Disease mutations and phosphorylation alter the allosteric pathways involved in autoinhibition of protein phosphatase 2A, J. Chem. Phys., vol. 158, no. 21, p. 215101, 2023.

[17]

C. A. Eide, M. S. Zabriskie, S. L. S. Stevens, O. Antelope, N. A. Vellore, H. Than, A. R. Schultz, P. Clair, A. D. Bowler, A. D. Pomicter, et al., Combining the allosteric inhibitor asciminib with ponatinib suppresses emergence of and restores efficacy against highly resistant BCR-ABL1 mutants, Cancer Cell, vol. 36, no. 4, pp. 431–443.e5, 2019.

[18]

S. Lu, Y. Qiu, D. Ni, X. He, J. Pu, and J. Zhang, Emergence of allosteric drug-resistance mutations: New challenges for allosteric drug discovery, Drug Discov. Today, vol. 25, no. 1, pp. 177–184, 2020.

[19]

J. V. Roman, R. Mascarenhas, K. Ceric, D. P. Ballou, and R. Banerjee, Disease-causing cystathionine β-synthase linker mutations impair allosteric regulation, J. Biol. Chem., vol. 299, no. 12, p. 105449, 2023.

[20]

M. J. Landrum, S. Chitipiralla, G. R. Brown, C. Chen, B. Gu, J. Hart, D. Hoffman, W. Jang, K. Kaur, C. Liu, et al., ClinVar: Improvements to accessing data, Nucl. Acids Res., vol. 48, no. D1, pp. D835–D844, 2020.

[21]

A. Schmidt, S. Röner, K. Mai, H. Klinkhammer, M. Kircher, and K. U. Ludwig, Predicting the pathogenicity of missense variants using features derived from AlphaFold2, Bioinformatics, vol. 39, no. 5, p. btad280, 2023.

[22]

K. J. Karczewski, L. C. Francioli, G. Tiao, B. B. Cummings, J. Alföldi, Q. Wang, R. L. Collins, K. M. Laricchia, A. Ganna, D. P. Birnbaum, et al., The mutational constraint spectrum quantified from variation in 141,456 humans, Nature, vol. 581, no. 7809, pp. 434–443, 2020.

[23]

D. M. Fowler and S. Fields, Deep mutational scanning: A new style of protein science, Nat. Methods, vol. 11, no. 8, pp. 801–807, 2014.

[24]

G. M. Findlay, R. M. Daza, B. Martin, M. D. Zhang, A. P. Leith, M. Gasperini, J. D. Janizek, X. Huang, L. M. Starita, and J. Shendure, Accurate classification of BRCA1 variants with saturation genome editing, Nature, vol. 562, no. 7726, pp. 217–222, 2018.

[25]

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, et al., Highly accurate protein structure prediction with AlphaFold, Nature, vol. 596, no. 7873, pp. 583–589, 2021.

[26]

M. Kircher, D. M. Witten, P. Jain, B. J. O'roak, G. M. Cooper, and J. Shendure, A general framework for estimating the relative pathogenicity of human genetic variants, Nat. Genet., vol. 46, no. 3, pp. 310–315, 2014.

[27]
P. Rentzsch, D. Witten, G. M. Cooper, J. Shendure, and M. Kircher, CADD: Predicting the deleteriousness of variants throughout the human genome, Nucl. Acids Res., vol. 47, no. D1, pp. D886–D894, 2019.
[28]
N. M. Ioannidis, J. H. Rothstein, V. Pejaver, S. Middha, S. K. McDonnell, S. Baheti, A. Musolf, Q. Li, E. Holzinger, D. Karyadi, et al., REVEL: An ensemble method for predicting the pathogenicity of rare missense variants, Am. J. Hum. Genet., vol. 99, no. 4, pp. 877–885, 2016.
[29]
D. Raimondi, I. Tanyalcin, J. Ferté, A. Gazzo, G. Orlando, T. Lenaerts, M. Rooman, and W. Vranken, DEOGEN2: Prediction and interactive visualization of single amino acid variant deleteriousness in human proteins, Nucl. Acids Res., vol. 45, no. W1, pp. W201–W206, 2017.
[30]
H. Qi, H. Zhang, Y. Zhao, C. Chen, J. J. Long, W. K. Chung, Y. Guan, and Y. Shen, MVP predicts the pathogenicity of missense variants by deep learning, Nat. Commun., vol. 12, no. 1, p. 510, 2021.
[31]

H. Zhang, M. S. Xu, X. Fan, W. K. Chung, and Y. Shen, Predicting functional effect of missense variants using graph attention neural networks, Nat. Mach. Intell., vol. 4, no. 11, pp. 1017–1028, 2022.

[32]

J. Frazer, P. Notin, M. Dias, A. Gomez, J. K. Min, K. Brock, Y. Gal, and D. S. Marks, Disease variant prediction with deep generative models of evolutionary data, Nature, vol. 599, no. 7883, pp. 91–95, 2021.

[33]

J. Cheng, G. Novati, J. Pan, C. Bycroft, A. Žemgulytė, T. Applebaum, A. Pritzel, L. H. Wong, M. Zielinski, T. Sargeant, et al., Accurate proteome-wide missense variant effect prediction with AlphaMissense, Science, vol. 381, no. 6664, p. eadg7492, 2023.

[34]

N. Brandes, G. Goldman, C. H. Wang, C. J. Ye, and V. Ntranos, Genome-wide prediction of disease variant effects with a deep protein language model, Nat. Genet., vol. 55, no. 9, pp. 1512–1522, 2023.

[35]

M. Varadi, S. Anyango, M. Deshpande, S. Nair, C. Natassia, G. Yordanova, D. Yuan, O. Stroe, G. Wood, A. Laydon, et al., AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models, Nucl. Acids Res., vol. 50, no. D1, pp. D439–D444, 2022.

[36]

B. Wang, X. Lei, W. Tian, A. Perez-Rathke, Y. Y. Tseng, and J. Liang, Structure-based pathogenicity relationship identifier for predicting effects of single missense variants and discovery of higher-order cancer susceptibility clusters of mutations, Brief. Bioinform., vol. 24, no. 4, p. bbad206, 2023.

[37]

K. Vogan, Improved pathogenicity prediction using primate genomics, Nat. Genet., vol. 55, no. 7, p. 1082, 2023.

[38]

G. Abrusán, D. B. Ascher, and M. Inouye, Known allosteric proteins have central roles in genetic disease, PLoS Comput. Biol., vol. 18, no. 2, p. e1009806, 2022.

[39]

The UniProt Consortium, UniProt: A worldwide hub of protein knowledge, Nucl. Acids Res., vol. 47, no. D1, pp. D506–D515, 2019.

[40]

X. Liu, S. Lu, K. Song, Q. Shen, D. Ni, Q. Li, X. He, H. Zhang, Q. Wang, Y. Chen, et al., Unraveling allosteric landscapes of allosterome with ASD, Nucl. Acids Res., vol. 48, no. D1, pp. D394–D401, 2020.

[41]
J. He, X. Liu, C. Zhu, J. Zha, Q. Li, M. Zhao, J. Wei, M. Li, C. Wu, J. Wang, et al., ASD2023: Towards the integrating landscapes of allosteric knowledgebase, Nucl. Acids Res., vol. 52, no. D1, pp. D376–D383, 2024.
[42]

Z. Sun, Q. Liu, G. Qu, Y. Feng, and M. T. Reetz, Utility of B-factors in protein science: Interpreting rigidity, flexibility, and internal motion and engineering thermostability, Chem. Rev., vol. 119, no. 3, pp. 1626–1665, 2019.

[43]

S. Ausaf Ali, I. Hassan, A. Islam, and F. Ahmad, A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states, Curr. Protein Pept. Sci., vol. 15, no. 5, pp. 456–476, 2014.

[44]
P. J. A. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke, I. Friedberg, T. Hamelryck, F. Kauff, B. Wilczynski, et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics, Bioinformatics, vol. 25, no. 11, pp. 1422–1423, 2009.
[45]
E. Boutet, D. Lieberherr, M. Tognolli, M. Schneider, P. Bansal, A. J. Bridge, S. Poux, L. Bougueleret, and I. Xenarios, UniProtKB/swiss-prot, the manually annotated section of the UniProt KnowledgeBase: How to use the entry view, in Plant Bioinformatics: Methods and Protocols, D. Edwards, ed, 2nd ed. New York, NY, USA: Springer, 2016, pp. 23–54.
Tsinghua Science and Technology
Pages 2284-2299
Cite this article:
Zhang H, Ju Z, Zhang J, et al. Exploring Pathogenic Mutation in Allosteric Proteins: The Prediction and Beyond. Tsinghua Science and Technology, 2025, 30(5): 2284-2299. https://doi.org/10.26599/TST.2024.9010226

353

Views

60

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 20 September 2024
Revised: 04 October 2024
Accepted: 11 November 2024
Published: 29 April 2025
© The Author(s) 2025.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return