AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

A Review on Air-Ground Coordination in Mobile Edge Computing: Key Technologies, Applications and Future Directions

School of Art, Nanjing University of Information Science and Technology, Nanjing 210044, China
School of Software, Nanjing University of Information Science and Technology, Nanjing 210044, China
College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266555, China
School of Math and Applied Mathematics, Nanjing University of Information Science and Technology, Nanjing 210044, China
Show Author Information

Abstract

In recent years, Mobile Edge Computing (MEC) has received extensive research attention due to its characteristics, such as real-time data processing and flexible application deployment. However, traditional MEC server deployment relies on the terrestrial Base Stations (BSs), resulting in high deployment costs and limited coverage range. In response to these challenges, air-ground coordination has emerged, which effectively combines the advantages of edge computing and Unmanned Aerial Vehicles (UAVs), providing an effective architecture for edge intelligence. By utilizing the flexibility of UAVs and empowering them into edge nodes with computing resources, the coverage range of MEC can be expanded, thereby reducing the reliance of edge devices on terrestrial BSs. Furthermore, leveraging terrestrial BSs as supplements to the computing power compensates for relatively limited computational capabilities of UAVs. Although extensive studies have been conducted on air-ground coordination, there are few related summaries of application technologies and prospects. Thus, the key technologies of air-ground coordination and applications are comprehensively reviewed in this paper. Finally, to provide guidance for interested researchers, the development trends and potential applications of air-ground coordination are explored.

References

[1]

A. Khanna and S. Kaur, Internet of Things (IoT), applications and challenges: A comprehensive review, Wirel. Pers. Commun., vol. 114, no. 2, pp. 1687–1762, 2020.

[2]

H. Liao, Z. Wang, Z. Zhou, Y. Wang, H. Zhang, S. Mumtaz, and M. Guizani, Blockchain and semi-distributed learning-based secure and low-latency computation offloading in space-air-ground-integrated power IoT, IEEE J. Sel. Top. Signal Process., vol. 16, no. 3, pp. 381–394, 2022.

[3]

K. Cao, Y. Liu, G. Meng, and Q. Sun, An overview on edge computing research, IEEE Access, vol. 8, pp. 85714–85728, 2020.

[4]

H. Yan, M. Bilal, X. Xu, and S. Vimal, Edge server deployment for health monitoring with reinforcement learning in Internet of medical things, IEEE Trans. Comput. Soc. Syst., vol. 11, no. 3, pp. 3079–3089, 2024.

[5]

Y. Liu, M. Peng, G. Shou, Y. Chen, and S. Chen, Toward edge intelligence: Multiaccess edge computing for 5G and Internet of things, IEEE Internet Things J., vol. 7, no. 8, pp. 6722–6747, 2020.

[6]

X. Zhang, J. Zhang, J. Xiong, L. Zhou, and J. Wei, Energy-efficient multi-UAV-enabled multiaccess edge computing incorporating NOMA, IEEE Internet Things J., vol. 7, no. 6, pp. 5613–5627, 2020.

[7]

M. G. Sarwar Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan, and F. Hussain, Machine learning at the network edge: A survey, ACM Comput. Surv., vol. 54, no. 8, pp. 1–37, 2022.

[8]

Z. Chang, S. Liu, X. Xiong, Z. Cai, and G. Tu, A survey of recent advances in edge-computing-powered artificial intelligence of things, IEEE Internet Things J., vol. 8, no. 18, pp. 13849–13875, 2021.

[9]
Y. Liu, K. Xiong, Q. Ni, P. Fan, and K. Ben Letaief, UAV-assisted wireless powered cooperative mobile edge computing: Joint offloading, CPU control, and trajectory optimization, IEEE Internet Things J., vol. 7, no. 4, pp. 2777–2790, 2020.
[10]

Y. Qu, H. Dai, H. Wang, C. Dong, F. Wu, S. Guo, and Q. Wu, Service provisioning for UAV-enabled mobile edge computing, IEEE J. Sel. Areas Commun., vol. 39, no. 11, pp. 3287–3305, 2021.

[11]

Z. Guo, K. Yu, N. Kumar, W. Wei, S. Mumtaz, and M. Guizani, Deep-distributed-learning-based POI recommendation under mobile-edge networks, IEEE Internet Things J., vol. 10, no. 1, pp. 303–317, 2023.

[12]

J. Tang, J. Nie, Y. Zhang, Y. Duan, Z. Xiong, and D. Niyato, Air-ground collaborative edge intelligence for future generation networks, IEEE Netw., vol. 37, no. 2, pp. 118–125, 2023.

[13]
P. S. Bithas, V. Nikolaidis, A. G. Kanatas, and G. K. Karagiannidis, UAV-to-ground communications: Channel modeling and UAV selection, IEEE Trans. Commun., vol. 68, no. 8, pp. 5135–5144, 2020.
[14]

R. Ding, Y. Xu, F. Gao, and X. Shen, Trajectory design and access control for air–ground coordinated communications system with multiagent deep reinforcement learning, IEEE Internet Things J., vol. 9, no. 8, pp. 5785–5798, 2022.

[15]

T. Hong, W. Zhao, R. Liu, and M. Kadoch, Space-air-ground IoT network and related key technologies, IEEE Wirel. Commun., vol. 27, no. 2, pp. 96–104, 2020.

[16]
F. Jiang, K. Wang, L. Dong, C. Pan, W. Xu, and K. Yang, AI driven heterogeneous MEC system with UAV assistance for dynamic environment: Challenges and solutions, IEEE Netw., vol. 35, no. 1, pp. 400–408, 2021.
[17]
F. A. Al-Yarimi, R. Salah, and K. Mohamoud, Blockchain-driven secure data sharing framework for edge computing networks, Tsinghua Science and Technology, https://doi.org/10.26599/TST.2024.9010051, 2024.
[18]

A. Alzu’bi, A. Alomar, S. Alkhaza’leh, A. Abuarqoub, and M. Hammoudeh, A review of privacy and security of edge computing in smart healthcare systems: Issues, challenges, and research directions, Tsinghua Science and Technology, vol. 29, no. 4, pp. 1152–1180, 2024.

[19]

M. H. Adnan, Z. Ahmad Zukarnain, and O. A. Amodu, Fundamental design aspects of UAV-enabled MEC systems: A review on models, challenges, and future opportunities, Comput. Sci. Rev., vol. 51, p. 100615, 2024.

[20]

Z. Ning, H. Hu, X. Wang, L. Guo, S. Guo, G. Wang, and X. Gao, Mobile edge computing and machine learning in the Internet of unmanned aerial vehicles: A survey, ACM Comput. Surv., vol. 56, no. 1, pp. 1–31, 2024.

[21]

Z. Song, X. Qin, Y. Hao, T. Hou, J. Wang, and X. Sun, A comprehensive survey on aerial mobile edge computing: Challenges, state-of-the-art, and future directions, Comput. Commun., vol. 191, pp. 233–256, 2022.

[22]

P. McEnroe, S. Wang, and M. Liyanage, A survey on the convergence of edge computing and AI for UAVs: Opportunities and challenges, IEEE Internet Things J., vol. 9, no. 17, pp. 15435–15459, 2022.

[23]

M. Dai, N. Huang, Y. Wu, J. Gao, and Z. Su, Unmanned-aerial-vehicle-assisted wireless networks: Advancements, challenges, and solutions, IEEE Internet Things J., vol. 10, no. 5, pp. 4117–4147, 2023.

[24]

L. Zhang, F. Gao, F. Deng, L. Xi, and J. Chen, Distributed estimation of a layered architecture for collaborative air-ground target geolocation in outdoor environments, IEEE Trans. Ind. Electron., vol. 70, no. 3, pp. 2822–2832, 2023.

[25]

J. Li, Y. Cheng, J. Zhou, J. Chen, Z. Liu, S. Hu, and V. C. M. Leung, Energy-efficient ground traversability mapping based on UAV-UGV collaborative system, IEEE Trans. Green Commun. Netw., vol. 6, no. 1, pp. 69–78, 2022.

[26]
R. Gu, S. Wang, H. Dai, X. Chen, Z. Wang, W. Bao, J. Zheng, Y. Tu, Y. Huang, L. Qi, X. Xu, W. Dou, and G. Chen, Fluid-shuttle: Efficient cloud data transmission based on serverless computing compression, in Proc. IEEE Conf. on Computer Communications, New York City, NY, USA, 2023, pp. 1−10.
[27]

K. Meng, Z. Liu, X. Xu, X. Xia, H. Tian, L. Qi, and X. Zhou, Heterogeneous edge service deployment for cyber physical social intelligence in Internet of vehicles, IEEE Trans. Intell. Veh., doi: 10.1109/TIV.2023.33225372.

[28]

L. Sun, L. Wan, and X. Wang, Learning-based resource allocation strategy for industrial IoT in UAV-enabled MEC systems, IEEE Trans. Ind. Inform., vol. 17, no. 7, pp. 5031–5040, 2021.

[29]

Y. Li, W. Liang, W. Xu, Z. Xu, X. Jia, Y. Xu, and H. Kan, Data collection maximization in IoT-sensor networks via an energy-constrained UAV, IEEE Trans. Mob. Comput., vol. 22, no. 1, pp. 159–174, 2023.

[30]

X. Zhou, M. Bilal, R. Dou, J. J. P. C. Rodrigues, Q. Zhao, J. Dai, and X. Xu, Edge computation offloading with content caching in 6G-enabled IoV, IEEE Trans. Intell. Transp. Syst., vol. 25, no. 3, pp. 2733–2747, 2024.

[31]

N. Huang, C. Dou, Y. Wu, L. Qian, B. Lin, and H. Zhou, Unmanned-aerial-vehicle-aided integrated sensing and computation with mobile-edge computing, IEEE Internet Things J., vol. 10, no. 19, pp. 16830–16844, 2023.

[32]

L. Zhang, F. Gao, B. Chen, L. Xi, F. Deng, and J. Chen, Weighted decentralized information filter for collaborative air-ground target geolocation in large outdoor environments, IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 11, pp. 7292–7302, 2023.

[33]

X. Deng, Y. Liu, C. Zhu, and H. Zhang, Air-ground surveillance sensor network based on edge computing for target tracking, Comput. Commun., vol. 166, pp. 254–261, 2021.

[34]

D. Liu, W. Bao, X. Zhu, B. Fei, Z. Xiao, and T. Men, Vision-aware air-ground cooperative target localization for UAV and UGV, Aerosp. Sci. Technol., vol. 124, p. 107525, 2022.

[35]
M. Theunissen, H. Pousseur, P. Castillo, and A. C. Victorino, Cooperative architecture using air and ground vehicles for the search and recognition of targets, in Proc. IEEE 26th Int. Conf. Intelligent Transportation Systems (ITSC), Bilbao, Spain, 2023, pp. 1355–1360.
[36]

Z. Xia, J. Du, J. Wang, C. Jiang, Y. Ren, G. Li, and Z. Han, Multi-agent reinforcement learning aided intelligent UAV swarm for target tracking, IEEE Trans. Veh. Technol., vol. 71, no. 1, pp. 931–945, 2022.

[37]

L. Zhou, S. Leng, Q. Liu, and Q. Wang, Intelligent UAV swarm cooperation for multiple targets tracking, IEEE Internet Things J., vol. 9, no. 1, pp. 743–754, 2022.

[38]

R. B. Zadeh, A. Zaslavsky, S. W. Loke, and S. MahmoudZadeh, A multiagent mission coordination system for continuous situational awareness of bushfires, IEEE Trans. Autom. Sci. Eng., vol. 20, no. 2, pp. 1275–1291, 2023.

[39]

Z. Liao, S. Wang, J. Shi, Z. Sun, Y. Zhang, and M. B. Sial, Cooperative situational awareness of multi-UAV system based on improved D-S evidence theory, Aerosp. Sci. Technol., vol. 142, p. 108605, 2023.

[40]

X. Hai, H. Qiu, C. Wen, and Q. Feng, A novel distributed situation awareness consensus approach for UAV swarm systems, IEEE Trans. Intell. Transp. Syst., vol. 24, no. 12, pp. 14706–14717, 2023.

[41]

Y. Gao and D. Li, Unmanned aerial vehicle swarm distributed cooperation method based on situation awareness consensus and its information processing mechanism, Knowl. Based Syst., vol. 188, p. 105034, 2020.

[42]

D. Cavaliere, J. A. Morente-Molinera, V. Loia, S. Senatore, and E. Herrera-Viedma, Collective scenario understanding in a multivehicle system by consensus decision making, IEEE Trans. Fuzzy Syst., vol. 28, no. 9, pp. 1984–1995, 2020.

[43]

H. Jiang, Z. Zhang, C.-X. Wang, J. Zhang, J. Dang, L. Wu, and H. Zhang, A novel 3D UAV channel model for A2G communication environments using AoD and AoA estimation algorithms, IEEE Trans. Commun., vol. 68, no. 11, pp. 7232–7246, 2020.

[44]

Z. Li, X. Xu, T. Hang, H. Xiang, Y. Cui, L. Qi, and X. Zhou, A knowledge-driven anomaly detection framework for social production system, IEEE Trans. Comput. Soc. Syst., vol. 11, no. 3, pp. 3179–3192, 2024.

[45]

K. Mao, Q. Zhu, M. Song, H. Li, B. Ning, G. F. Pedersen, and W. Fan, Machine-learning-based 3-D channel modeling for U2V mmWave communications, IEEE Internet Things J., vol. 9, no. 18, pp. 17592–17607, 2022.

[46]

B. Hua, H. Ni, Q. Zhu, C.-X. Wang, T. Zhou, K. Mao, J. Bao, and X. Zhang, Channel modeling for UAV-to-ground communications with posture variation and fuselage scattering effect, IEEE Trans. Commun., vol. 71, no. 5, pp. 3103–3116, 2023.

[47]

J. Yu, X. Liu, Y. Gao, C. Zhang, and W. Zhang, Deep learning for channel tracking in IRS-assisted UAV communication systems, IEEE Trans. Wirel. Commun., vol. 21, no. 9, pp. 7711–7722, 2022.

[48]

H. Jiang, B. Xiong, H. Zhang, and E. Basar, Physics-based 3D end-to-end modeling for double-RIS assisted non-stationary UAV-to-ground communication channels, IEEE Trans. Commun., vol. 71, no. 7, pp. 4247–4261, 2023.

[49]

T. Wu, W. Dou, F. Wu, S. Tang, C. Hu, and J. Chen, A deployment optimization scheme over multimedia big data for large-scale media streaming application, ACM Trans. Multimedia Comput. Commun. Appl., vol. 12, no. 5s, pp. 1–23, 2016.

[50]

L. Zhang and N. Ansari, Latency-aware IoT service provisioning in UAV-aided mobile-edge computing networks, IEEE Internet Things J., vol. 7, no. 10, pp. 10573–10580, 2020.

[51]

C. Wang, D. Deng, L. Xu, and W. Wang, Resource scheduling based on deep reinforcement learning in UAV assisted emergency communication networks, IEEE Trans. Commun., vol. 70, no. 6, pp. 3834–3848, 2022.

[52]

L. Gu, M. Cui, L. Xu, and X. Xu, Collaborative offloading method for digital twin empowered cloud edge computing on Internet of vehicles, Tsinghua Science and Technology, vol. 28, no. 3, pp. 433–451, 2023.

[53]
X. Xu, S. Tang, L. Qi, X. Zhou, F. Dai, and W. Dou, CNN partitioning and offloading for vehicular edge networks in Web3, IEEE Commun. Mag., vol. 61, no. 8, pp. 36–42, 2023.
[54]
E. El Haber, H. A. Alameddine, C. Assi, and S. Sharafeddine, UAV-aided ultra-reliable low-latency computation offloading in future IoT networks, IEEE Trans. Commun., vol. 69, no. 10, pp. 6838–6851, 2021.
[55]

Z. Liu, X. Xu, F. Han, Q. Zhao, L. Qi, W. Dou, and X. Zhou, Secure edge server placement with non-cooperative game for internet of vehicles in web 3.0, IEEE Transactions on Network Science and Engineering, vol. 11, no. 5, pp. 4020–4031, 2024.

[56]

Y. Qu, H. Dai, H. Wang, C. Dong, F. Wu, S. Guo, and Q. Wu, Service provisioning for UAV-enabled mobile edge computing, IEEE J. Sel. Areas Commun., vol. 39, no. 11, pp. 3287–3305, 2021.

[57]

H. Xu, W. Huang, Y. Zhou, D. Yang, M. Li, and Z. Han, Edge computing resource allocation for unmanned aerial vehicle assisted mobile network with blockchain applications, IEEE Trans. Wirel. Commun., vol. 20, no. 5, pp. 3107–3121, 2021.

[58]
F. Fei, S. Li, H. Dai, C. Hu, W. Dou, and Q. Ni, A K-anonymity based schema for location privacy preservation, IEEE Trans. Sustain. Comput., vol. 4, no. 2, pp. 156–167, 2019.
[59]

H. Peng and X. Shen, Multi-agent reinforcement learning based resource management in MEC- and UAV-assisted vehicular networks, IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 131–141, 2021.

[60]

S. Zhu, L. Gui, D. Zhao, N. Cheng, Q. Zhang, and X. Lang, Learning-based computation offloading approaches in UAVs-assisted edge computing, IEEE Trans. Veh. Technol., vol. 70, no. 1, pp. 928–944, 2021.

[61]

Y. Jing, Y. Qu, C. Dong, W. Ren, Y. Shen, Q. Wu, and S. Guo, Exploiting UAV for air-ground integrated federated learning: A joint UAV location and resource optimization approach, IEEE Trans. Green Commun. Netw., vol. 7, no. 3, pp. 1420–1433, 2023.

[62]

W. Mei, Q. Wu, and R. Zhang, Cellular-connected UAV: Uplink association, power control and interference coordination, IEEE Trans. Wirel. Commun., vol. 18, no. 11, pp. 5380–5393, 2019.

[63]

W. Mei and R. Zhang, Aerial-ground interference mitigation for cellular-connected UAV, IEEE Wirel. Commun., vol. 28, no. 1, pp. 167–173, 2021.

[64]

W. K. New, C. Y. Leow, K. Navaie, Y. Sun, and Z. Ding, Interference-aware NOMA for cellular-connected UAVs: Stochastic geometry analysis, IEEE J. Sel. Areas Commun., vol. 39, no. 10, pp. 3067–3080, 2021.

[65]

P. Li, L. Xie, J. Yao, and J. Xu, Cellular-connected UAV with adaptive air-to-ground interference cancellation and trajectory optimization, IEEE Commun. Lett., vol. 26, no. 6, pp. 1368–1372, 2022.

[66]

W. K. New, C. Y. Leow, K. Navaie, and Z. Ding, Aerial-terrestrial network NOMA for cellular-connected UAVs, IEEE Trans. Veh. Technol., vol. 71, no. 6, pp. 6559–6573, 2022.

[67]

L. Qi, R. Wang, C. Hu, S. Li, Q. He, and X. Xu, Time-aware distributed service recommendation with privacy-preservation, Inf. Sci., vol. 480, pp. 354–364, 2019.

[68]

W. Tang, H. Zhang, Y. He, and M. Zhou, Performance analysis of multi-antenna UAV networks with 3D interference coordination, IEEE Trans. Wirel. Commun., vol. 21, no. 7, pp. 5145–5161, 2022.

[69]

H. Attou, A. Guezzaz, S. Benkirane, M. Azrour, and Y. Farhaoui, Cloud-based intrusion detection approach using machine learning techniques, Big Data Mining and Analytics, vol. 6, no. 3, pp. 311–320, 2023.

[70]

J. Li, T. Sun, X. Huang, L. Ma, Q. Lin, J. Chen, and V. C. M. Leung, A memetic path planning algorithm for unmanned air/ground vehicle cooperative detection systems, IEEE Trans. Autom. Sci. Eng., vol. 19, no. 4, pp. 2724–2737, 2022.

[71]

X. Xu, Z. Liu, M. Bilal, S. Vimal, and H. Song, Computation offloading and service caching for intelligent transportation systems with digital twin, IEEE Trans. Intell. Transp. Syst., vol. 23, no. 11, pp. 20757–20772, 2022.

[72]

M. Samir, C. Assi, S. Sharafeddine, D. Ebrahimi, and A. Ghrayeb, Age of information aware trajectory planning of UAVs in intelligent transportation systems: A deep learning approach, IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 12382–12395, 2020.

[73]

X. Xu, C. Yang, M. Bilal, W. Li, and H. Wang, Computation offloading for energy and delay trade-offs with traffic flow prediction in edge computing-enabled IoV, IEEE Trans. Intell. Transp. Syst., vol. 24, no. 12, pp. 15613–15623, 2023.

[74]

D. Liu, Y. Xu, Y. Xu, Y. Sun, A. Anpalagan, Q. Wu, and Y. Luo, Opportunistic data collection in cognitive wireless sensor networks: Air-ground collaborative online planning, IEEE Internet Things J., vol. 7, no. 9, pp. 8837–8851, 2020.

[75]
Y. Liu, K. Xiong, Q. Ni, P. Fan, and K. Ben Letaief, UAV-assisted wireless powered cooperative mobile edge computing: Joint offloading, CPU control, and trajectory optimization, IEEE Internet Things J., vol. 7, no. 4, pp. 2777–2790, 2020.
[76]
T. Feng, L. Xie, J. Yao, and J. Xu, UAV-enabled data collection for wireless sensor networks with distributed beamforming, IEEE Trans. Wirel. Commun., vol. 21, no. 2, pp. 1347–1361, 2022.
[77]

X. Qi, J. Chong, Q. Zhang, and Z. Yang, Collaborative computation offloading in the multi-UAV fleeted mobile edge computing network via connected dominating set, IEEE Trans. Veh. Technol., vol. 71, no. 10, pp. 10832–10848, 2022.

[78]

N. Nouri, F. Fazel, J. Abouei, and K. N. Plataniotis, Multi-UAV placement and user association in uplink MIMO ultra-dense wireless networks, IEEE Trans. Mob. Comput., vol. 22, no. 3, pp. 1615–1632, 2023.

[79]

R. Ding, Y. Xu, F. Gao, and X. Shen, Trajectory design and access control for air-ground coordinated communications system with multiagent deep reinforcement learning, IEEE Internet Things J., vol. 9, no. 8, pp. 5785–5798, 2022.

[80]
R. Ding, F. Gao, G. Yang, and X. S. Shen, Air-ground coordination communication by multi-agent deep reinforcement learning, in Proc. IEEE Int. Conf. Communications, Montreal, Canada, 2021, pp. 1–6.
[81]

X. Fan, P. Wu, and M. Xia, Air-to-ground communications beyond 5G: UAV swarm formation control and tracking, IEEE Trans. Wirel. Commun., vol. 23, no. 7, pp. 8029–8043, 2024.

[82]

A. M. Seid, G. O. Boateng, B. Mareri, G. Sun, and W. Jiang, Multi-agent DRL for task offloading and resource allocation in multi-UAV enabled IoT edge network, IEEE Trans. Netw. Serv. Manag., vol. 18, no. 4, pp. 4531–4547, 2021.

[83]
W. Wang, X. Xu, M. Bilal, M. Khan, and Y. Xing, UAV-assisted content caching for human-centric consumer applications in IoV, IEEE Trans. Consum. Electron., vol. 70, no. 1, pp. 927–938, 2024.
[84]
Y. Wang, J. Wu, X. Hua, C. H. Liu, G. Li, J. Zhao, Y. Yuan, and G. Wang, Air-ground spatial crowdsourcing with UAV carriers by geometric graph convolutional multi-agent deep reinforcement learning, in Proc. IEEE 39th Int. Conf. Data Engineering (ICDE), Anaheim, CA, USA, 2023, pp. 1790–1802.
[85]
Y. Ye, C. H. Liu, Z. Dai, J. Zhao, Y. Yuan, G. Wang, and J. Tang, Exploring both individuality and cooperation for air-ground spatial crowdsourcing by multi-agent deep reinforcement learning, in Proc. IEEE 39th Int. Conf. Data Engineering (ICDE), Anaheim, CA, USA, 2023, pp. 205–217.
[86]
C. Jiang, N. Ge, and L. Kuang, AI-enabled next-generation communication networks: Intelligent agent and AI router, IEEE Wirel. Commun., vol. 27, no. 6, pp. 129–133, 2020.
[87]

S. Gu, Q. Zhang, and W. Xiang, Coded storage-and-computation: A new paradigm to enhancing intelligent services in space-air-ground integrated networks, IEEE Wirel. Commun., vol. 27, no. 6, pp. 44–51, 2020.

[88]

S. O. Ajakwe, D.-S. Kim, and J.-M. Lee, Drone transportation system: Systematic review of security dynamics for smart mobility, IEEE Internet Things J., vol. 10, no. 16, pp. 14462–14482, 2023.

[89]

K. AL-Dosari and N. Fetais, A new shift in implementing unmanned aerial vehicles (UAVs) in the safety and security of smart cities: A systematic literature review, Safety, vol. 9, no. 3, p. 64, 2023.

[90]

S. Javed, A. Hassan, R. Ahmad, W. Ahmed, R. Ahmed, A. Saadat, and M. Guizani, State-of-the-art and future research challenges in UAV swarms, IEEE Internet Things J., vol. 11, no. 11, pp. 19023–19045, 2024.

[91]
F. Sharevski, Leveraging cellular intemet-of-things for resilient and robust disaster management, in Proc. IEEE Global Communications Conf. (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018, pp. 1–5.
[92]

M. Lyu, Y. Zhao, C. Huang, and H. Huang, Unmanned aerial vehicles for search and rescue: A survey, Remote. Sens., vol. 15, no. 13, p. 3266, 2023.

[93]

S. Javaid, N. Saeed, Z. Qadir, H. Fahim, B. He, H. Song, and M. Bilal, Communication and control in collaborative UAVs: Recent advances and future trends, IEEE Trans. Intell. Transp. Syst., vol. 24, no. 6, pp. 5719–5739, 2023.

[94]

R. Antoine, T. Lopez, M. Tanguy, C. Lissak, L. Gailler, P. Labazuy, and C. Fauchard, Geoscientists in the sky: Unmanned aerial vehicles responding to geohazards, Surv. Geophys., vol. 41, no. 6, pp. 1285–1321, 2020.

[95]

S. Manoj and C. Valliyammai, Drone network for early warning of forest fire and dynamic fire quenching plan generation, EURASIP J. Wirel. Commun. Netw., vol. 2023, no. 1, p. 112, 2023.

[96]
A. Valsan, P. B., V. D. G. H., and R. S. Unnikrishnan, P. K. Reddy, Unmanned aerial vehicle for search and rescue mission, in Proc. 4th Int. Conf. Trends in Electronics and Informatics, Tirunelveli, India, 2020, pp. 684–687.
[97]

D. Oh and J. Han, Smart search system of autonomous flight UAVs for disaster rescue, Sensors, vol. 21, no. 20, p. 6810, 2021.

[98]

S. M. S. M. Daud, M. Y. P. M. Yusof, C. C. Heo, L. S. Khoo, M. K. C. Singh, M. S. Mahmood, and H. Nawawi, Applications of drone in disaster management: A scoping review, Sci. Justice, vol. 62, no. 1, pp. 30–42, 2022.

[99]
A. Saif, K. Dimyati, K. A. Noordin, N. S. M. Shah, Q. Abdullah, and F. Mukhlif, Unmanned aerial vehicles for post-disaster communication networks, in Proc. IEEE 10th Int. Conf. System Engineering and Technology (ICSET), Shah Alam, Malaysia, 2020, pp. 273–277.
[100]
M. Peer, V. A. Bohara, and A. Srivastava, Multi-UAV placement strategy for disaster-resilient communication network, in Proc. IEEE 92nd Vehicular Technology Conf. (VTC2020-Fall), Victoria, Canada, 2020, pp. 1–7.
[101]
A. Fascista, Toward integrated large-scale environmental monitoring using WSN/UAV/crowdsensing: A review of applications, signal processing, and future perspectives, Sensors, vol. 22, no. 5, p. 1824, 2022.
[102]

Y.-H. Liao and J.-G. Juang, Real-time UAV trash monitoring system, Appl. Sci., vol. 12, no. 4, p. 1838, 2022.

[103]

M. Geraeds, T. van Emmerik, R. de Vries, and M. S. bin Ab Razak, Riverine plastic litter monitoring using unmanned aerial vehicles (UAVs), Remote. Sens., vol. 11, no. 17, p. 2045, 2019.

[104]

P. K. Reddy Maddikunta, S. Hakak, M. Alazab, S. Bhattacharya, T. R. Gadekallu, W. Z. Khan, and Q.-V. Pham, Unmanned aerial vehicles in smart agriculture: Applications, requirements, and challenges, IEEE Sens. J., vol. 21, no. 16, pp. 17608–17619, 2021.

[105]

D. Popescu, F. Stoican, G. Stamatescu, L. Ichim, and C. Dragana, Advanced UAV-WSN system for intelligent monitoring in precision agriculture, Sensors, vol. 20, no. 3, p. 817, 2020.

[106]

D. Gao, Q. Sun, B. Hu, and S. Zhang, A framework for agricultural pest and disease monitoring based on internet-of-things and unmanned aerial vehicles, Sensors, vol. 20, no. 5, p. 1487, 2020.

[107]

B. Wagner and M. Egerer, Application of UAV remote sensing and machine learning to model and map land use in urban gardens, J. Urban Ecol., vol. 8, no. 1, p. juac008, 2022.

[108]

M. Samir, C. Assi, S. Sharafeddine, D. Ebrahimi, and A. Ghrayeb, Age of information aware trajectory planning of UAVs in intelligent transportation systems: A deep learning approach, IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 12382–12395, 2020.

[109]

L. Qi, C. Hu, X. Zhang, M. R. Khosravi, S. Sharma, S. Pang, and T. Wang, Privacy-aware data fusion and prediction with spatial-temporal context for smart city industrial environment, IEEE Trans. Ind. Inform., vol. 17, no. 6, pp. 4159–4167, 2021.

[110]
J. Gao, Z. Hu, K. Bian, X. Mao, and L. Song, AQ360: UAV-aided air quality monitoring by 360-degree aerial panoramic images in urban areas, IEEE Internet Things J., vol. 8, no. 1, pp. 428–442, 2021.
[111]

Y. Huang, Y. J. Li, and Z. Cai, Security and privacy in metaverse: A comprehensive survey, Big Data Mining and Analytics, vol. 6, no. 2, pp. 234–247, 2023.

[112]

A. Sharma, P. K. Singh, and Y. Kumar, An integrated fire detection system using IoT and image processing technique for smart cities, Sustain. Cities Soc., vol. 61, p. 102332, 2020.

[113]
T. Do Trong, T. B. Duy, V. D. Khai, and H.-A. Pham, Applying deep learning for UAV obstacle avoidance: A case study in high-rise fire victim search, in Proc. 12th Int. Symp. on Information and Communication Technology, Ho Chi Minh, Vietnam, 2023, pp. 831–837.
[114]
S. Kumar, AI/ML enabled automation system for software defined disaggregated open radio access networks: Transforming telecommunication business, Big Data Mining and Analytics, vol. 7, no. 2, pp. 271–293, 2024.
[115]

H. Wu, F. Lyu, C. Zhou, J. Chen, L. Wang, and X. Shen, Optimal UAV caching and trajectory in aerial-assisted vehicular networks: A learning-based approach, IEEE J. Sel. Areas Commun., vol. 38, no. 12, pp. 2783–2797, 2020.

[116]
X. Xu, F. Wu, M. Bilal, X. Xia, W. Dou, L. Yao, and W. Zhong, XRL-SHAP-Cache: An explainable reinforcement learning approach for intelligent edge service caching in content delivery networks, Sci. China Inf. Sci., vol. 67, no. 7, p. 170303, 2024.
[117]

L. Zeng, Q. Liu, S. Shen, and X. Liu, Improved double deep Q network-based task scheduling algorithm in edge computing for makespan optimization, Tsinghua Science and Technology, vol. 29, no. 3, pp. 806–817, 2024.

[118]

Q. Liu, L. Shi, L. Sun, J. Li, M. Ding, and F. Shu, Path planning for UAV-mounted mobile edge computing with deep reinforcement learning, IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5723–5728, 2020.

[119]

S. Bijjahalli, A. Gardi, N. Pongsakornsathien, R. Sabatini, and T. Kistan, A unified airspace risk management framework for UAS operations, Drones, vol. 6, no. 7, p. 184, 2022.

[120]

C. Yang, X. Xu, M. Bilal, Y. Wen, and T. Huang, Deep-deterministic-policy-gradient-based task offloading with optimized K-means in edge-computing-enabled IoMT cyber-physical systems, IEEE Syst. J., vol. 17, no. 4, pp. 5195–5206, 2023.

[121]

T. Zhang, Z. Shen, J. Jin, X. Zheng, A. Tagami, and X. Cao, Achieving democracy in edge intelligence: A fog-based collaborative learning scheme, IEEE Internet Things J., vol. 8, no. 4, pp. 2751–2761, 2021.

[122]

X. Xu, H. Li, Z. Li, and X. Zhou, Safe: Synergic data filtering for federated learning in cloud-edge computing, IEEE Trans. Ind. Inform., vol. 19, no. 2, pp. 1655–1665, 2023.

[123]

J. Li, T. Sun, X. Huang, L. Ma, Q. Lin, J. Chen, and V. C. M. Leung, A memetic path planning algorithm for unmanned air/ground vehicle cooperative detection systems, IEEE Trans. Autom. Sci. Eng., vol. 19, no. 4, pp. 2724–2737, 2022.

[124]

G. Liu, G. Bao, M. Bilal, A. Jones, Z. Jing, and X. Xu, Edge data caching with consumer-centric service prediction in resilient industry 5.0, IEEE Trans. Consum. Electron., vol. 70, no. 1, pp. 1482–1492, 2024.

[125]
A. K. Sandhu, Big data with cloud computing: Discussions and challenges, Big Data Mining and Analytics, vol. 5, no. 1, pp. 32–40, 2022.
[126]

X. Xu, X. Zhou, X. Zhou, M. Bilal, L. Qi, X. Xia, and W. Dou, Distributed edge caching for zero trust-enabled connected and automated vehicles: A multi-agent reinforcement learning approach, IEEE Wirel. Commun., vol. 31, no. 2, pp. 36–41, 2024.

[127]

H. Liao, Z. Jia, Z. Zhou, Y. Wang, H. Zhang, and S. Mumtaz, Cloud-edge-end collaboration in air-ground integrated power IoT: A semidistributed learning approach, IEEE Trans. Ind. Inform., vol. 18, no. 11, pp. 8047–8057, 2022.

[128]
X. Xu, F. Wu, M. Bilal, X. Xia, W. Dou, L. Yao, and W. Zhong, XRL-SHAP-Cache: An explainable reinforcement learning approach for intelligent edge service caching in content delivery networks, Sci. China Inf. Sci., vol. 67, no. 7, p. 170303, 2024.
[129]

H. Yan, X. Xu, M. Bilal, X. Xia, W. Dou, and H. Wang, Customer centric service caching for intelligent cyber-physical transportation systems with cloud-edge computing leveraging digital twins, IEEE Trans. Consum. Electron., vol. 70, no. 1, pp. 1787–1797, 2024.

[130]
S. Naqvi, J. Chakareski, N. Mastronarde, J. Xu, F. Afghah, and A. Razi, Energy efficiency analysis of UAV-assisted mmWave HetNets, in Proc. IEEE Int. Conf. Communications (ICC), Kansas City, MO, USA, 2018, pp. 1–6.
[131]

J. Zhao, F. Gao, L. Kuang, Q. Wu, and W. Jia, Channel tracking with flight control system for UAV mmWave MIMO communications, IEEE Commun. Lett., vol. 22, no. 6, pp. 1224–1227, 2018.

[132]

Z. Xie, J. Liu, M. Sheng, N. Zhao, and J. Li, Exploiting aerial computing for air-to-ground coverage enhancement, IEEE Wirel. Commun., vol. 28, no. 5, pp. 50–58, 2021.

[133]
S. Wang, Y. Huang, and B. Clerckx, Dynamic air-ground collaboration for multi-access edge computing, in Proc. IEEE Int. Conf. Communications, Seoul, Republic of Korea, 2022, pp. 5365–5371.
[134]
M. Z. Chowdhury, M. Shahjalal, S. Ahmed, and Y. M. Jang, 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions, IEEE Open J. Commun. Soc., vol. 1, pp. 957–975, 2020.
[135]

Y. Qu, C. Dong, J. Zheng, H. Dai, F. Wu, S. Guo, and A. Anpalagan, Empowering edge intelligence by air-ground integrated federated learning, IEEE Netw., vol. 35, no. 5, pp. 34–41, 2021.

[136]

W. Saad, M. Bennis, and M. Chen, A vision of 6G wireless systems: Applications, trends, technologies, and open research problems, IEEE Netw., vol. 34, no. 3, pp. 134–142, 2020.

[137]

Z. Wang, Y. Du, K. Wei, K. Han, X. Xu, G. Wei, W. Tong, P. Zhu, J. Ma, J. Wang, et al., Vision, application scenarios, and key technology trends for 6G mobile communications, Sci. China Inf. Sci., vol. 65, no. 5, p. 151301, 2022.

[138]

W. Dou, W. Tang, X. Wu, L. Qi, X. Xu, X. Zhang, and C. Hu, An insurance theory based optimal cyber-insurance contract against moral hazard, Inf. Sci., vol. 527, pp. 576–589, 2020.

[139]

J. Zhao, F. Gao, G. Ding, T. Zhang, W. Jia, and A. Nallanathan, Integrating communications and control for UAV systems: Opportunities and challenges, IEEE Access, vol. 6, pp. 67519–67527, 2018.

[140]

T. T. Nguyen, T. D. Hoang, M. T. Pham, T. T. Vu, T. H. Nguyen, Q.-T. Huynh, and J. Jo, Monitoring agriculture areas with satellite images and deep learning, Appl. Soft Comput., vol. 95, p. 106565, 2020.

[141]

R. Chandra, M. Swaminathan, T. Chakraborty, J. Ding, Z. Kapetanovic, P. Kumar, and D. Vasisht, Democratizing data-driven agriculture using affordable hardware, IEEE Micro, vol. 42, no. 1, pp. 69–77, 2022.

[142]
F. Solano, S. Praticò, G. Piovesan, and G. Modica, Unmanned aerial vehicle (UAV) derived canopy gaps in the old-growth beech forest of mount pollinello (italy): Preliminary results. Lecture Notes in Computer Science. Cham, Switzerland: Springer International Publishing, 2021. pp. 126–138,
[143]

Q. Xiao, H. H. Chang, G. Geng, and Y. Liu, An ensemble machine-learning model to predict historical PM2.5 concentrations in China from satellite data, Environ. Sci. Technol., vol. 52, no. 22, pp. 13260–13269, 2018.

[144]

L. Tan, K. Yu, L. Lin, X. Cheng, G. Srivastava, J. C.-W. Lin, and W. Wei, Speech emotion recognition enhanced traffic efficiency solution for autonomous vehicles in a 5G-enabled space-air-ground integrated intelligent transportation system, IEEE Trans. Intell. Transp. Syst., vol. 23, no. 3, pp. 2830–2842, 2022.

Tsinghua Science and Technology
Pages 1359-1386
Cite this article:
Li S, Liu G, Li L, et al. A Review on Air-Ground Coordination in Mobile Edge Computing: Key Technologies, Applications and Future Directions. Tsinghua Science and Technology, 2025, 30(3): 1359-1386. https://doi.org/10.26599/TST.2024.9010142

397

Views

67

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 28 May 2024
Revised: 30 July 2024
Accepted: 07 August 2024
Published: 30 December 2024
© The Author(s) 2025.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return