AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (9.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Discrete Data-Driven Position and Orientation Control for Redundant Manipulators with Jacobian Matrix Learning

Department of Mechanical and Electrical Engineering, Changchun University of Technology, Changchun 130012, China
BYD Co., Ltd., Shenzhen 518083, China
College of Engineering, Peking University, Beijing 100871, China
Department of Mechanical and Electrical Engineering, Changchun Polytechnic, Changchun 130033, China
Show Author Information

Abstract

Redundant manipulators utilize their redundant solutions to achieve the position and orientation control of the end-effector in a given variety of complex tasks, which is an essential issue in the field of industrial robots. Moreover, for manipulators with unknown models, traditional control methods generate large control errors during the execution of the task or even lead to the failure of the task. To address this problem, this paper proposes a Discrete Data-Driven Position and Orientation Control (D3POC) scheme. The scheme consists of a Discrete Jacobian Matrix Learning (DJML) algorithm, a Discrete Gradient Neural Dynamics (DGND) solver, and a Kalman filter. Then, theoretical analyses are provided to demonstrate the convergence of the D3POC scheme. Subsequently, simulations, comparisons, and experiments based on this scheme are carried out on redundant manipulators. The obtained results indicate the validity, superiority, and practicability of the proposed control scheme.

References

[1]

J. Liu, Z. Cao, and Y. Tang, Key-part attention retrieval for robotic object recognition, Tsinghua Science and Technology, vol. 29, no. 3, pp. 644–655, 2024.

[2]

B. Fang, X. Wei, F. Sun, H. Huang, Y. Yu, and H. Liu, Skill learning for human-robot interaction using wearable device, Tsinghua Science and Technology, vol. 24, no. 6, pp. 654–662, 2019.

[3]

M. Liu, Y. Li, Y. Chen, Y. Qi, and L. Jin, A distributed competitive and collaborative coordination for multirobot systems, IEEE Trans. Mob. Comput., doi: 10.1109/TMC.2024.3397242.

[4]

W. Zhang, F. Sun, H. Wu, C. Tan, and Y. Ma, Asynchronous brain-computer interface shared control of robotic grasping, Tsinghua Science and Technology, vol. 24, no. 3, pp. 360–370, 2019.

[5]

S. Zhang, Y. Chen, L. Zhang, X. Gao, and X. Chen, Study on robot grasping system of SSVEP-BCI based on augmented reality stimulus, Tsinghua Science and Technology, vol. 28, no. 2, pp. 322–329, 2023.

[6]

M. Liu, K. Liu, P. Zhu, G. Zhang, X. Ma, and M. Shang, Data-driven remote center of cyclic motion (RC 2M) control for redundant robots with rod-shaped end-effector, IEEE Trans. Ind. Inform., vol. 20, no. 4, pp. 6772–6780, 2024.

[7]

G. Sawadwuthikul, T. Tothong, T. Lodkaew, P. Soisudarat, S. Nutanong, P. Manoonpong, and N. Dilokthanakul, Visual goal human-robot communication framework with few-shot learning: A case study in robot waiter system, IEEE Trans. Ind. Inf., vol. 18, no. 3, pp. 1883–1891, 2022.

[8]

H. Zhang, H. Jin, Z. Liu, Y. Liu, Y. Zhu, and J. Zhao, Real-time kinematic control for redundant manipulators in a time-varying environment: Multiple-dynamic obstacle avoidance and fast tracking of a moving object, IEEE Trans. Ind. Inform., vol. 16, no. 1, pp. 28–41, 2020.

[9]

L. Wei and L. Jin, Collaborative neural solution for time-varying nonconvex optimization with noise rejection, IEEE Trans. Emerg. Top. Comput. Intell., vol. 8, no. 4, pp. 2935–2948, 2024.

[10]

E. Spyrakos-Papastavridis and J. S. Dai, Minimally model-based trajectory tracking and variable impedance control of flexible-joint robots, IEEE Trans. Ind. Electron., vol. 68, no. 7, pp. 6031–6041, 2021.

[11]

K. Zhao and L. Ning, Hybrid navigation method for multiple robots facing dynamic obstacles, Tsinghua Science and Technology, vol. 27, no. 6, pp. 894–901, 2022.

[12]

Z. Xie and L. Jin, Hybrid control of orientation and position for redundant manipulators using neural network, IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 5, pp. 2737–2747, 2023.

[13]

K. Zhu and T. Zhang, Deep reinforcement learning based mobile robot navigation: A review, Tsinghua Science and Technology, vol. 26, no. 5, pp. 674–691, 2021.

[14]

J. Falco, D. Hemphill, K. Kimble, E. Messina, A. Norton, R. Ropelato, and H. Yanco, Benchmarking protocols for evaluating grasp strength, grasp cycle time, finger strength, and finger repeatability of robot end-effectors, IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 644–651, 2020.

[15]

Z. Sun, S. Tang, J. Zhang, and J. Yu, Nonconvex noise-tolerant neural model for repetitive motion of omnidirectional mobile manipulators, IEEE/CAA J. Autom. Sin., vol. 10, no. 8, pp. 1766–1768, 2023.

[16]

C. Yang, D. Huang, W. He, and L. Cheng, Neural control of robot manipulators with trajectory tracking constraints and input saturation, IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 9, pp. 4231–4242, 2021.

[17]

A. S. Lafmejani, A. Doroudchi, H. Farivarnejad, X. He, D. Aukes, M. M. Peet, H. Marvi, R. E. Fisher, and S. Berman, Kinematic modeling and trajectory tracking control of an octopus-inspired hyper-redundant robot, IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 3460–3467, 2020.

[18]

M. Liu and M. Shang, Orientation tracking incorporated multicriteria control for redundant manipulators with dynamic neural network, IEEE Trans. Ind. Electron., vol. 71, no. 4, pp. 3801–3810, 2024.

[19]

Z. Xie, S. Li, and L. Jin, A bi-criteria kinematic strategy for motion/force control of robotic manipulator, IEEE Trans. Autom. Sci. Eng., doi: 10.1109/TASE.2023.3313564.

[20]

L. Jin, F. Zhang, M. Liu, and S. S.-D. Xu, Finite-time model predictive tracking control of position and orientation for redundant manipulators, IEEE Trans. Ind. Electron., vol. 70, no. 6, pp. 6017–6026, 2023.

[21]

Z. Xie, L. Jin, and X. Luo, Kinematics-based motion-force control for redundant manipulators with quaternion control, IEEE Trans. Autom. Sci. Eng., vol. 20, no. 3, pp. 1815–1828, 2023.

[22]

P. I. Corke, A simple and systematic approach to assigning Denavit–Hartenberg parameters, IEEE Trans. Robot., vol. 23, no. 3, pp. 590–594, 2007.

[23]

Z. Cui, Y. Huang, W. Li, P. W. Y. Chiu, and Z. Li, Noise-resistant adaptive gain recurrent neural network for visual tracking of redundant flexible endoscope robot with time-varying state variable constraints, IEEE Trans. Ind. Electron., vol. 71, no. 3, pp. 2694–2704, 2024.

[24]

S. Li, Z. Shao, and Y. Guan, A dynamic neural network approach for efficient control of manipulators, IEEE Trans. Syst. Man Cybern. Syst., vol. 49, no. 5, pp. 932–941, 2019.

[25]

N. Tan, Z. Ye, P. Yu, and F. Ni, A dual fuzzy-enhanced neurodynamic scheme for model-less kinematic control of redundant and hyperredundant robots, IEEE Trans. Fuzzy Syst., vol. 30, no. 10, pp. 4409–4422, 2022.

[26]

D. Chen, Y. Zhang, and S. Li, Tracking control of robot manipulators with unknown models: A Jacobian-matrix-adaption method, IEEE Trans. Ind. Inform., vol. 14, no. 7, pp. 3044–3053, 2018.

[27]

N. Tan and P. Yu, Predefined-time convergent kinematic control of robotic manipulators with unknown models based on hybrid neural dynamics and human behaviors, IEEE Trans. Neural Netw. Learn. Syst., doi: 10.1109/TNNLS.2023.3310744.

[28]

N. Tan, Z. Zhong, P. Yu, Z. Li, and F. Ni, A discrete model-free scheme for fault-tolerant tracking control of redundant manipulators, IEEE Trans. Ind. Inform., vol. 18, no. 12, pp. 8595–8606, 2022.

[29]

M. Liu, Y. Hu, and L. Jin, Discrete data-driven control of redundant manipulators with adaptive Jacobian matrix, IEEE Trans. Ind. Electron., vol. 71, no. 10, pp. 12685–12695, 2024.

[30]

R. Diversi, R. Guidorzi, and U. Soverini, Kalman filtering in extended noise environments, IEEE Trans. Autom. Contr., vol. 50, no. 9, pp. 1396–1402, 2005.

[31]

F. Zhang, L. Jin, and X. Luo, Error-summation enhanced Newton algorithm for model predictive control of redundant manipulators, IEEE Trans. Ind. Electron., vol. 70, no. 3, pp. 2800–2811, 2023.

[32]

Z. Xie, L. Jin, X. Luo, S. Li, and X. Xiao, A data-driven cyclic-motion generation scheme for kinematic control of redundant manipulators, IEEE Trans. Contr. Syst. Technol., vol. 29, no. 1, pp. 53–63, 2021.

Tsinghua Science and Technology
Pages 1980-1993
Cite this article:
Pang Z, Hu Y, Yu J, et al. Discrete Data-Driven Position and Orientation Control for Redundant Manipulators with Jacobian Matrix Learning. Tsinghua Science and Technology, 2025, 30(5): 1980-1993. https://doi.org/10.26599/TST.2024.9010111

119

Views

6

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 07 April 2024
Revised: 06 June 2024
Accepted: 14 June 2024
Published: 11 September 2024
© The Author(s) 2025.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return