Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The advancement of artificial intelligence-generated content drives the diversification of healthcare services, resulting in increased private information collection by healthcare service providers. Therefore, compliance with privacy regulations has increasingly become a paramount concern for both regulatory authorities and consumers. Privacy policies are crucial for consumers to understand how their personal information is collected, stored, and processed. In this work, we propose a privacy policy text compliance reasoning framework called FACTOR, which harnesses the power of large language models (LLMs). Since the General Data Protection Regulation (GDPR) has broad applicability, this work selects Article 13 of the GDPR as regulation requirements. FACTOR segments the privacy policy text using a sliding window strategy and employs LLM-based text entailment to assess compliance for each segment. The framework then applies a rule-based ensemble approach to aggregate the entailment results for all regulation requirements from the GDPR. Our experiments on a synthetic corpus of 388 privacy policies demonstrate the effectiveness of FACTOR. Additionally, we analyze 100 randomly selected websites offering healthcare services, revealing that nine of them lack a privacy policy altogether, while 29 have privacy policy texts that fail to meet the regulation requirements.
P. Maji, H. K. Mondal, A. P. Roy, S. Poddar, and S. P. Mohanty, iKardo: An intelligent ECG device for automatic critical beat identification for smart healthcare, IEEE Trans. Consum. Electr., vol. 67, no. 4, pp. 235–243, 2021.
P. A. Bonatti, L. Ioffredo, I. M. Petrova, L. Sauro, and I. R. Siahaan, Real-time reasoning in OWL2 for GDPR compliance, Artif. Intell., vol. 289, p. 103389, 2020.
X. Zhou, W. Liang, K. Yan, W. Li, K. I. K. Wang, J. Ma, and Q. Jin, Edge-enabled two-stage scheduling based on deep reinforcement learning for internet of everything, IEEE Internet Things J., vol. 10, no. 4, pp. 3295–3304, 2023.
L. Kong, G. Li, W. Rafique, S. Shen, Q. He, M. R. Khosravi, R. Wang, and L. Qi, Time-aware missing healthcare data prediction based on ARIMA model, IEEE/ACM Trans. Computat. Biol. Bioinform., vol. 21, no. 4, pp. 1042–1050, 2024.
X. Zhou, X. Ye, K. I. K. Wang, W. Liang, N. K. C. Nair, S. Shimizu, Z. Yan, and Q. Jin, Hierarchical federated learning with social context clustering-based participant selection for internet of medical things applications, IEEE Trans. Comput. Soc. Syst., vol. 10, no. 4, pp. 1742–1751, 2023.
K. Huckvale, J. T. Prieto, M. Tilney, P. J. Benghozi, and J. Car, Unaddressed privacy risks in accredited health and wellness apps: A cross-sectional systematic assessment, BMC Med., vol. 13, no. 1, pp. 214, 2015.
A. M. McDonald and L. F. Cranor, The cost of reading privacy policies, I/S: A Journal of Law and Policy for the Information Society, vol. 4, pp. 543, 2008.
P. Jain, M. Gyanchandani, and N. Khare, Big data privacy: A technological perspective and review, J. Big Data, vol. 3, no. 1, pp. 25, 2016.
T. Linden, R. Khandelwal, H. Harkous, and K. Fawaz, The privacy policy landscape after the GDPR, Proc. Privacy Enhancing Technol., vol. 2020, no. 1, pp. 47–64, 2020.
M. Degeling, C. Utz, C. Lentzsch, H. Hosseini, F. Schaub, and T. Holz, We value your privacy .. now take some cookies: Measuring the GDPR’S impact on web privacy, arXiv preprint arXiv:1808.05096v4, 2019.
A. Tauqeer, A. Kurteva, T. R. Chhetri, A. Ahmeti, and A. Fensel, Automated GDPR contract compliance verification using knowledge graphs, Information, vol. 13, no. 10, p. 447, 2022.
L. Qi, X. Xu, X. Wu, Q. Ni, Y. Yuan, and X. Zhang, Digital-twin-enabled 6G mobile network video streaming using mobile crowdsourcing, IEEE J. Select. Areas Commun., vol. 41, no. 10, pp. 3161–3174, 2023.
F. Wang, L. Wang, G. Li, Y. Wang, C. Lv, and L. Qi, Edge-cloud-enabled matrix factorization for diversified APIs recommendation in mashup creation, World Wide Web, vol. 25, no. 5, pp. 1809–1829, 2022.
X. Zhou, W. Liang, K. I. K. Wang, Z. Yan, L. T. Yang, W. Wei, J. Ma, and Q. Jin, Decentralized P2P federated learning for privacy-preserving and resilient mobile robotic systems, IEEE Wirel. Commun., vol. 30, no. 2, pp. 82–89, 2023.
X. Zhou, X. Zheng, X. Cui, J. Shi, W. Liang, Z. Yan, L. T. Yang, S. Shimizu, and K. I. K. Wang, Digital twin enhanced federated reinforcement learning with lightweight knowledge distillation in mobile networks, IEEE J. Select. Areas Commun., vol. 41, no. 10, pp. 3191–3211, 2023.
Mamta, B. B. Gupta, K. C. Li, V. C. M. Leung, K. E. Psannis, S. Yamaguchi, Blockchain-assisted secure fine-grained searchable encryption for a cloud-based healthcare cyber-physical system, IEEE/CAA J. Autom. Sin., vol. 8, no. 12, pp. 1877–1890, 2021.
G. N. Nguyen, N. H. Le Viet, M. Elhoseny, K. Shankar, B. B. Gupta, and A. A. Abd El-Latif, Secure blockchain enabled cyber–physical systems in healthcare using deep belief network with ResNet model, J. Parallel Distrib. Comput., vol. 153, pp. 150–160, 2021.
A. Raj and S. Prakash, A privacy-preserving authentic healthcare monitoring system using blockchain, Int. J. Softw Sci. Computat. Intell., vol. 14, no. 1, pp. 1–23, 2022.
M. Barati and O. Rana, Tracking GDPR compliance in cloud-based service delivery, IEEE Trans. Serv. Comput., vol. 15, no. 3, pp. 1498–1511, 2022.
L. Campanile, M. Iacono, F. Marulli, and M. Mastroianni, Designing a GDPR compliant blockchain-based IoV distributed information tracking system, Inf. Process. Manag., vol. 58, no. 3, p. 102511, 2021.
S. Tokas, O. Owe, and T. Ramezanifarkhani, Static checking of GDPR-related privacy compliance for object-oriented distributed systems, J. Logical Algebraic Methods Programm., vol. 125, p. 100733, 2022.
F. Wang, H. Zhu, G. Srivastava, S. Li, M. R. Khosravi, and L. Qi, Robust collaborative filtering recommendation with user-item-trust records, IEEE Trans. Comput. Soc. Syst., vol. 9, no. 4, pp. 986–996, 2022.
X. Zhou, W. Liang, K. I. K. Wang, and L. T. Yang, Deep correlation mining based on hierarchical hybrid networks for heterogeneous big data recommendations, IEEE Trans. Comput. Soc. Syst., vol. 8, no. 1, pp. 171–178, 2021.
L. Qi, W. Lin, X. Zhang, W. Dou, X. Xu, and J. Chen, A correlation graph based approach for personalized and compatible web APIs recommendation in mobile app development, IEEE Trans. Knowl. Data Eng., vol. 35, no. 6, pp. 5444–5457, 2023.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).