AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Security Challenges in Internet of Vehicles (IoV) for ITS: A Survey

Department of Computer Engineering, Boukan Branch, Islamic Azad University, Boukan 59511, Iran
Department of Computer Science, University of Raparin, Rania 46012, Iraq
Department of Computer Science, College of Science, Cihan University-Erbil, Erbil 44001, Iraq
Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
Show Author Information

Abstract

Due to their diverse applications, including safety, welfare, and improving traffic efficiency, inter-vehicle ad-hoc networks have been extensively studied. Globally, road congestion, accidents, fuel consumption, and environmental pollution caused by the large number of vehicles have become serious problems that have caused a lot of human and financial losses. Intelligent transportation systems (ITS) have introduced VANETs in order to overcome these problems. In vehicular ad hoc networks (VANETs), vehicles equipped with wireless interfaces can communicate with other vehicles and with fixed roadside equipment via mobile ad hoc networks (MANETs). Messages are transmitted over open wireless channels in VANETs. Malicious nodes target these networks to protect them from various attacks, such as interference, eavesdropping, spoofing, denial of service, Sybil, black holes, worm holes, gray holes, etc. Security of VANETs is therefore one of the most significant issues. Security issues, attacks, attackers, and secure routing protocols in VANETs are discussed in this article, as well as available solutions to solve security issues.

References

[1]

M. Sohail, Z. Latif, S. Javed, S. Biswas, S. Ajmal, U. Iqbal, M. Raza, and A. U. Khan, Routing protocols in vehicular adhoc networks (VANETs): A comprehensive survey, Internet Things, vol. 23, p. 100837, 2023.

[2]

H. Amari, Z. Abou El Houda, L. Khoukhi, and L. H. Belguith, Trust management in vehicular ad-hoc networks: Extensive survey, IEEE Access, vol. 11, pp. 47659–47680, 2023.

[3]

X. Ding, R. Yao, and E. Khezri, An efficient algorithm for optimal route node sensing in smart tourism Urban traffic based on priority constraints, Wirel. Netw., vol. 30, no. 9, pp. 7189–7206, 2024.

[4]

S. A. Memon, M. S. Park, I. Memon, W. G. Kim, S. Khan, and Y. Shi, Modified smoothing algorithm for tracking multiple maneuvering targets in clutter, Sensors, no. Basel, p. 4759, 2022.

[5]

Z. Afzal and M. Kumar, Security of vehicular ad-hoc networks (VANET): A survey, J. Phys.: Conf. Ser., vol. 1427, no. 1, p. 012015, 2020.

[6]

C. Yu and K. Lu, Trust-based certificateless privacy-preserving authentication in Internet of vehicles, Secur. Commun. Netw., vol. 2022, no. 1, p. 8758156, 2022.

[7]

M. S. Sheikh and J. Liang, A comprehensive survey on VANET security services in traffic management system, Wirel. Commun. Mob. Comput., vol. 2019, no. 1, p. 2423915, 2019.

[8]

I. Memon, R. A. Shaikh, M. K. Hasan, R. Hassan, A. U. Haq, and K. A. Zainol, Protect mobile travelers information in sensitive region based on fuzzy logic in IoT technology, Secur. Commun. Netw., vol. 2020, no. 1, p. 8897098, 2020.

[9]
N. H. Hussein, S. P. Koh, C. T. Yaw, S. K. Tiong, F. Benedict, T. Yusaf, K. Kadirgama, and T. C. Hong, SDN-based VANET routing: A comprehensive survey on architectures, protocols, analysis, and future challenges, IEEE Access, p. 1, 2024.
[10]

J. Zhu, C. Hu, E. Khezri, and M. M. M. Ghazali, Edge intelligence-assisted animation design with large models: a survey, J. Cloud Comput., vol. 13, no. 1, p. 48, 2024.

[11]

J. Cui, D. Wu, J. Zhang, Y. Xu, and H. Zhong, An efficient authentication scheme based on semi-trusted authority in VANETs, IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2972–2986, 2019.

[12]
M. M. Hamdi, M. Dhafer, A. S. Mustafa, S. A. Rashid, A. J. Ahmed, and A. M. Shantaf, Effect sybil attack on security authentication service in VANET, in Proc. Int. Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA ).Ankara, Turkey, 2022, pp. 1–6.
[13]

N. Ahmed, Z. Deng, I. Memon, F. Hassan, K. H. Mohammadani, and R. Iqbal, Retracted] A survey on location privacy attacks and prevention deployed with IoT in vehicular networks, Wirel. Commun. Mob. Comput., vol. 2022, no. 1, p. 6503299, 2022.

[14]

M. Aqeel, F. Ali, M. W. Iqbal, T. A. Rana, M. Arif, and M. Rabiul Auwul, A review of security and privacy concerns in the Internet of Things (IoT), J. Sens., vol. 2022, no. 1, p. 5724168, 2022.

[15]
E. Khezri, R. O. Yahya, H. Hassanzadeh, M. Mohaidat, S. Ahmadi, and M. Trik, DLJSF: Data-Locality Aware Job Scheduling IoT tasks in fog-cloud computing environments, Results Eng., vol. 21, p. 101780, 2024.
[16]
A. P. Jadhao and D. N. Chaudhari, Security aware routing scheme in vehicular adhoc network, in Proc. 2nd Int. Conf. Inventive Systems and Control (ICISC ). Coimbatore, India, 2018, pp. 1374–1379.
[17]

A. Slama and I. Lengliz, Survey on secure routing in vanets, Int. J. Netw. Secur. Appl., vol. 11, no. 3, pp. 71–87, 2019.

[18]
A. Khan, M. Ishtiaq, S. Anwar, and M. Ali Shah, A survey on secure routing strategies in VANETs, in Proc. 25th Int. Conf. Automation and Computing (ICAC ). Lancaster, UK, 2019, pp. 1–6.
[19]
A. Balaram, P. Chandana, S. A. Nabi, and M. SilpaRaj, A survey of VANET routing attacks and defense mechanisms in intelligent transportation system, Self‐Powered Cyber Physical Systems, pp. 213–226, 2023.
[20]
E. Khezri, E. Zeinali, and H. Sargolzaey, SGHRP: Secure Greedy Highway Routing Protocol with authentication and increased privacy in vehicular ad hoc networks, PLoS One, vol. 18, no. 4, p. e0282031, 2023.
[21]

E. Khezri and E. Zeinali, A review on highway routing protocols in vehicular ad hoc networks, SN Comput. Sci., vol. 2, no. 2, p. 71, 2021.

[22]

E. Khezri, E. Zeinali, and H. Sargolzaey, A novel highway routing protocol in vehicular ad hoc networks using VMaSC-LTE and DBA-MAC protocols, Wirel. Commun. Mob. Comput., vol. 2022, p. 1680507, 2022.

[23]
A. K. Goyal, A. Kumar Tripathi, and G. Agarwal, Security attacks, requirements and authentication schemes in VANET, in Proc. Int. Conf. Issues and Challenges in Intelligent Computing Techniques (ICICT ). GHAZIABAD, India. IEEE, 2019, pp. 1–5.
[24]
M. Maad Hamdi, L. Audah, S. Abduljabbar Rashid, A. Hamid Mohammed, S. Alani, and A. Shamil Mustafa, A review of applications, characteristics and challenges in vehicular ad hoc networks (VANETs), in Proc. Int. Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA ). Ankara, Turkey. IEEE, 2020, pp. 1–7.
[25]
S. Kona, S. V. K. R. Morthala, R. Konathala, P. K. Pinninti, H. K. Mavuru, and A. Maria, An efficient key agreement and anonymous mutual authentication protocols for secure communication in VANETs, in Proc. Int. Conf. Electronic Systems and Intelligent Computing (ICESIC ).Chennai, India, 2022, pp. 146–151.
[26]

X. Bi, B. Guo, L. Shi, Y. Lu, L. Feng, and Z. Lyu, A new affinity propagation clustering algorithm for V2V-supported VANETs, IEEE Access, vol. 8, pp. 71405–71421, 2020.

[27]
H. Abualola, H. Otrok, R. Mizouni, and S. Singh, A V2V charging allocation protocol for electric vehicles in VANET, Veh. Commun., vol. 33, p. 100427, 2022.
[28]

R. Tomar, H. G. Sastry, and M. Prateek, Establishing parameters for comparative analysis of V2V communication in VANET, J. Sci. Ind. Res., vol. 79, no. 1, pp. 26–29, 2020.

[29]
C. Wang, J. Shen, J.-F. Lai, and J. Liu, B-TSCA: Blockchain assisted trustworthiness scalable computation for V2I authentication in VANETs, IEEE Trans. Emerg. Top. Comput., vol. 9, no. 3, pp. 1386–1396, 2020.
[30]

H. Zhong, S. Zhang, J. Cui, L. Wei, and L. Liu, Broadcast encryption scheme for V2I communication in VANETs, IEEE Trans. Veh. Technol., vol. 71, no. 3, pp. 2749–2760, 2022.

[31]
E. Farsimadan, F. Palmieri, L. Moradi, D. Conte, and B. Paternoster, Vehicle-to-everything (V2X) communication scenarios for vehicular ad-hoc networking (VANET): An overview. Computational Science and Its Applications – ICCSA 2021. Cham: Springer International Publishing, 2021. pp. 15–30.
[32]

F. Abbas, G. Liu, P. Fan, and Z. Khan, An efficient cluster based resource management scheme and its performance analysis for V2X networks, IEEE Access, vol. 8, pp. 87071–87082, 2020.

[33]

A. Awang, K. Husain, N. Kamel, and S. Aïssa, Routing in vehicular ad-hoc networks: A survey on single- and cross-layer design techniques, and perspectives, IEEE Access, vol. 5, pp. 9497–9517, 2017.

[34]
A. A. Khan, V. Kumar, M. Ahmad, S. Rana, and D. Mishra, PALK: Password-based anonymous lightweight key agreement framework for smart grid, Int. J. Electr. Power Energy Syst., vol. 121, p. 106121, 2020.
[35]

X. Li, Y. Han, J. Gao, and J. Niu, Secure hierarchical authentication protocol in VANET, IET Inf. Secur., vol. 14, no. 1, pp. 99–110, 2020.

[36]

M. S. Sheikh, J. Liang, and W. Wang, Security and privacy in vehicular ad hoc network and vehicle cloud computing: A survey, Wirel. Commun. Mob. Comput., vol. 2020, p. 5129620, 2020.

[37]

C. Tripp-Barba, A. Zaldívar-Colado, L. Urquiza-Aguiar, and J. A. Aguilar-Calderón, Survey on routing protocols for vehicular ad hoc networks based on multimetrics, Electronics, vol. 8, no. 10, p. 1177, 2019.

[38]

H. Feng, D. Chen, and Z. Lv, Blockchain in digital twins-based vehicle management in VANETs, IEEE Trans. Intell. Transp. Syst., vol. 23, no. 10, pp. 19613–19623, 2022.

[39]
A. G. Hameed and M. S. Mahmoud, Vehicular ad-hoc network (VANET)–A review, in Proc. Iraqi Int. Conf. Communication and Information Technologies (IICCIT ). Basrah, Iraq, 2022, pp. 367–372.
[40]

P. Sehrawat and M. Chawla, Interpretation and investigations of topology based routing protocols applied in dynamic system of VANET, Wirel. Pers. Commun., vol. 128, no. 3, pp. 2259–2285, 2023.

[41]
A. K. Goyal, G. Agarwal, A. K. Tripathi, and G. Sharma, Systematic study of VANET: Applications, challenges, threats, attacks, schemes and issues in research, Green Computing in Network Security, pp. 33-52, 2022.
[42]
P. Kaushal, M. Khurana, and K. R. Ramkumar, A research perspective of VANET applications: A review, Emerging Technologies in Data Mining and Information Security. Singapore: Springer Nature Singapore, 2023.: pp. 627–636
[43]

A. V. Leonov and G. A. Litvinov, Simulation-based packet delivery performance evaluation with different parameters in flying ad-hoc network (FANET) using AODV and OLSR, J. Phys.: Conf. Ser., vol. 1015, p. 032178, 2018.

[44]
S. Sharma and A. Kaul, VANETs cloud: Architecture, applications, challenges, and issues, Arch. Comput. Meth. Eng., vol. 28, no. 4, pp. 2081–2102, 2021.
[45]

O. S. Al-Heety, Z. Zakaria, M. Ismail, M. M. Shakir, S. Alani, and H. Alsariera, A comprehensive survey: Benefits, services, recent works, challenges, security, and use cases for SDN-VANET, IEEE Access, vol. 8, pp. 91028–91047, 2020.

[46]

S. Goli-Bidgoli and N. Movahhedinia, A trust-based framework for increasing MAC layer reliability in cognitive radio VANETs, Wirel. Pers. Commun., vol. 95, no. 3, pp. 2873–2893, 2017.

[47]

S. Goli-Bidgoli and M. SofarAli, A new framework for secure routing in VANET, Journal of Electrical and Computer Engineering Innovations, vol. 6, no. 2, pp. 119–128, 2018.

[48]

P. Khanpara and S. Bhojak, Routing protocols and security issues in vehicular ad hoc networks: A review, J. Phys.: Conf. Ser., vol. 2325, no. 1, p. 012042, 2022.

[49]
R. Trivedi and P. Khanpara, Robust and secure routing protocols for MANET-based Internet of Things systems: A survey. Emergence of Cyber Physical System and IoT in Smart Automation and Robotics. Cham: Springer International Publishing, 2021. pp. 175–188.
[50]
R. Kaur, T. P. Singh, and V. Khajuria, Security issues in vehicular ad-hoc network(VANET), in Proc. 2nd Int. Conf. Trends in Electronics and Informatics (ICOEI ). Tirunelveli, India, 2018, pp. 884–889.
[51]

M. A. Al-Shareeda and S. Manickam, A systematic literature review on security of vehicular ad-hoc network (VANET) based on VEINS framework, IEEE Access, vol. 11, pp. 46218–46228, 2023.

[52]

L. Xiao, Y. Cao, Y. Gai, E. Khezri, J. Liu, and M. Yang, Recognizing sports activities from video frames using deformable convolution and adaptive multiscale features, J. Cloud Comput., vol. 12, no. 1, p. 167, 2023.

[53]
M. S. Manaseer and M. B. Younes, Secure protocols in VANETs: Availability considerations, in Proc. 14th Int. Conf. Information and Communication Systems (ICICS ). Irbid, Jordan, 2023, pp. 1–6.
[54]

P. Agarwal, Technical review on different applications, challenges and security in VANET, J. Multimed. Technol. Recent Adv., vol. 4, no. 3, pp. 21–30, 2017.

[55]
A. M. Alrehan and F. A. Alhaidari, Machine learning techniques to detect DDoS attacks on VANET system: A survey, in Proc. 2nd Int. Conf. Computer Applications & Information Security (ICCAIS ). Riyadh, Saudi Arabia. IEEE, 2019, pp. 1–6.
[56]

F. Farouk, Y. Alkady, and R. Rizk, Efficient privacy-preserving scheme for location based services in VANET system, IEEE Access, vol. 8, pp. 60101–60116, 2020.

[57]
S. Xu, X. Chen, Y. He, Y. Cao, and S. Gao, VMT: secure VANETs message transmission scheme with encryption and blockchain. Wireless Algorithms, Systems, and Applications. Cham: Springer Nature Switzerland, 2022. pp. 244–257.
[58]

J. Mahmood, Z. Duan, Y. Yang, Q. Wang, J. Nebhen, and M. N. M. Bhutta, Security in vehicular ad hoc networks: Challenges and countermeasures, Secur. Commun. Netw., vol. 2021, p. 9997771, 2021.

[59]
A. S. Mustafa, M. M. Hamdi, H. F. Mahdi, and M. S. Abood, VANET: Towards security issues review, in Proc. IEEE 5th Int. Symp. on Telecommunication Technologies (ISTT ). Shah Alam, Malaysia. IEEE, 2020, pp. 151–156.
[60]
Deeksha, A. Kumar, and M. Bansal, A review on VANET security attacks and their countermeasure, in Proc. 4th Int. Conf. Signal Processing, Computing and Control (ISPCC ). Solan, India, 2017, pp. 580–585.
[61]

R. M. Rajeswari and S. Rajesh, Enhance security and privacy in VANET based sensor monitoring and emergency services, Cybern. Syst., vol. 55, no. 4, pp. 872–893, 2024.

[62]

B. Akwirry, N. Bessis, H. Malik, and S. McHale, A multi-tier trust-based security mechanism for vehicular ad-hoc network communications, Sensors, no. Basel, p. 8285, 2022.

[63]

T. Liu, W. Peng, K. Zhu, and B. Zhao, A secure certificateless signature scheme for space-based Internet of Things, Secur. Commun. Netw., vol. 2022, p. 5818879, 2022.

[64]
P. Gaba and R. S. Raw, B-VANET: A blockchain-based vehicular ad-hoc network for data validation, Peer Peer Netw. Appl., vol. 15, no. 6, pp. 2650–2669, 2022.
[65]

C. Di and W. Wu, A novel identity-based mutual authentication scheme for vehicle ad hoc networks, Wirel. Commun. Mob. Comput., vol. 2022, p. 7881079, 2022.

[66]
M. Prakash and K. Saranya, VANET authentication with privacy-preserving schemes: A survey. Proceedings of Fourth International Conference on Communication, Computing and Electronics Systems. Singapore: Springer Nature Singapore, 2023. pp. 465–480.
[67]

Z. Xu, D. He, N. Kumar, and K. R. Choo, Efficient certificateless aggregate signature scheme for performing secure routing in VANETs, Secur. Commun. Netw., vol. 2020, p. 5276813, 2020.

[68]

H. Goumidi, Z. Aliouat, and S. Harous, Vehicular cloud computing security: A survey, Arab. J. Sci. Eng., vol. 45, no. 4, pp. 2473–2499, 2020.

[69]
E. Pastori Valentini, R. Ipolito Meneguette, and A. Alsuhaim, An attacks detection mechanism for intelligent transport system, in Proc. IEEE Int. Conf. Big Data (Big Data ). Atlanta, GA, USA. IEEE, 2020, pp. 2453–2461.
[70]
J. Harvey and S. Kumar, A survey of intelligent transportation systems security: Challenges and solutions, in Proc. IEEE 6th Intl Conf. Big Data Security on Cloud (BigDataSecurity ), IEEE Intl Conf. High Performance and Smart Computing, (HPSC ) and IEEE Intl Conf. Intelligent Data and Security (IDS ). Baltimore, MD, USA. IEEE, 2020, pp. 263–268.
[71]

A. Lamssaggad, N. Benamar, A. S. Hafid, and M. Msahli, A survey on the current security landscape of intelligent transportation systems, IEEE Access, vol. 9, pp. 9180–9208, 2021.

[72]

M. Arif, G. Wang, M. Zakirul Alam Bhuiyan, T. Wang, and J. Chen, A survey on security attacks in VANETs: Communication, applications and challenges, Veh. Commun., vol. 19, p. 100179, 2019.

[73]
T. Pavithra and B. S. Nagabhushana, A survey on security in VANETs, in Proc. Second Int. Conf. Inventive Research in Computing Applications (ICIRCA ). Coimbatore, India. IEEE, 2020, pp. 881–889.
[74]
D. P. Choudhari and S. S. Dorle, Maximization of packet delivery ratio for DADCQ protocol after removal of Eavesdropping and DDoS attacks in VANET, in Proc. 10th Int. Conf. Computing, Communication and Networking Technologies (ICCCNT ). Kanpur, India. IEEE, 2019, pp.1–8.
[75]
R. Abassi, VANET security and forensics: Challenges and opportunities, Wires Forensic Sci., vol. 1, no. 2, p. e1324, 2019.
[76]
P. Kohli, S. Painuly, P. Matta, and S. Sharma, Future trends of security and privacy in next generation VANET, in Proc. 3rd Int. Conf. Intelligent Sustainable Systems (ICISS ). Thoothukudi, India. IEEE, 2020, pp. 1372–1375.
[77]

S. Faisal and T. Zaidi, Timestamp based detection of sybil attack in VANET, Int J Netw Secur., vol. 22, pp. 397–408, 2014.

[78]
M. B. Mansour, C. Salama, H. K. Mohamed, and S. A. Hammad, VANET security and privacy - an overview, Int. J. Netw. Secur. Appl., vol. 10, no. 2, pp. 13–34, 2018.
[79]
T. Zaidi and Syed.Faisal, An overview: Various attacks in VANET, in Proc. 4th Int. Conf. Computing Communication and Automation (ICCCA ). Greater Noida, India, 2018, pp. 1–6.
[80]

L. E. Funderburg, H. Ren, and I.-Y. Lee, Pairing-free signatures with insider-attack resistance for vehicular ad-hoc networks (VANETs), IEEE Access, vol. 9, pp. 159587–159597, 2021.

[81]

S. Kudva, S. Badsha, S. Sengupta, H. La, I. Khalil, and M. Atiquzzaman, A scalable blockchain based trust management in VANET routing protocol, J. Parallel Distrib. Comput., vol. 152, pp. 144–156, 2021.

[82]
M. Ali Hezam Al Junaid, A. A. Syed, M. N. Mohd Warip, K. N. Fazira Ku Azir, and N. H. Romli, Classification of security attacks in VANET: A review of requirements and perspectives, MATEC Web Conf., vol. 150, p. 06038, 2018.
[83]
R. N. Nabwene, Review on intelligent internal attacks detection in VANET, in Proc. 4th Annual Int. Conf. Network and Information Systems for Computers (ICNISC ). Wuhan, China, 2018, pp. 1–6.
[84]

A. Kamil Ahmed, M. Najm Abdulwahed, and B. Farzaneh, A distributed trust mechanism for malicious behaviors in VANETs, Indones. J. Electr. Eng. Comput. Sci., vol. 19, no. 3, p. 1147, 2020.

[85]

M. Poongodi, M. Hamdi, A. Sharma, M. Ma, and P. K. Singh, DDoS detection mechanism using trust-based evaluation system in VANET, IEEE Access, vol. 7, pp. 183532–183544, 2019.

[86]
C. H. O. O. Quevedo, A. M. B. C. Quevedo, G. A. Campos, R. L. Gomes, J. Celestino, and A. Serhrouchni, An intelligent mechanism for sybil attacks detection in VANETs, in Proc. ICC 2020 - 2020 IEEE Int. Conf. Communications (ICC ), Dublin, Ireland, 2020, pp. 1–6.
[87]
S. R. Shetty and D. H. Manjaiah, A comprehensive study of security attack on VANET. Data Management, Analytics and Innovation. Singapore: Springer, 2021. pp. 407–428.
[88]
Y. S. Devi and M. Roopa, A critical analysis on attacks and challenges in VANETs. Computer Communication, Networking and IoT. Singapore: Springer Nature, 2022. pp. 245–255.
[89]
A. Haydari and Y. Yilmaz, RSU-based online intrusion detection and mitigation for VANET, Sensors (Basel), vol. 22, no. 19, p. 7612, 2022.
[90]
A. Gaurav, B. B. Gupta, F. J. G. Peñalvo, N. Nedjah, and K. Psannis, DDoS attack detection in vehicular ad-hoc network (VANET) for 5G networks. Security and Privacy Preserving for IoT and 5G Networks. Cham: Springer International Publishing, 2021. pp. 263–278.
[91]

K. Vamshi Krishna and K. Ganesh Reddy, Classification of distributed denial of service attacks in VANET: A survey, Wirel. Pers. Commun., vol. 132, no. 2, pp. 933–964, 2023.

[92]

K. Mahmood, J. Arshad, S. A. Chaudhry, and S. Kumari, An enhanced anonymous identity-based key agreement protocol for smart grid advanced metering infrastructure, Int. J. Commun. Syst., vol. 32, no. 16, p. e4137, 2019.

[93]
M. Abu Talib, S. Abbas, Q. Nasir, and M. F. Mowakeh, Systematic literature review on Internet-of-Vehicles communication security, Int. J. Distrib. Sens. Netw., vol. 14, no. 12, p. 155014771881505, 2018.
[94]
M. Al-Mehdhara and N. Ruan, MSOM: efficient mechanism for defense against DDoS attacks in VANET, Wirel. Commun. Mob. Comput., vol. 2021, no. 1, p. 8891758, 2021.
[95]

F. G. Abdulkadhim, Z. Yi, C. Tang, A. N. Onaizah, and B. Ahmed, Retraction Note: Design and development of a hybrid (SDN?+?SOM) approach for enhancing security in VANET, Appl. Nanosci., vol. 14, no. 4, pp. 721–721, 2024.

[96]
H. P. Dai Nguyen and R. Zoltán, The Current security challenges of vehicle communication in the future transportation system, in Proc. IEEE 16th Int. Symp. on Intelligent Systems and Informatics (SISY ), Subotica, Serbia, 2018, pp. 000161–000166.
[97]

H. Bangui, M. Ge, B. Buhnova, and L. Hong Trang, Towards faster big data analytics for anti-jamming applications in vehicular ad-hoc network, Trans. Emerg. Telecommun. Technol., vol. 32, no. 10, p. e4280, 2021.

[98]
B. K. Pattanayak, O. Pattnaik, and S. Pani, Dealing with sybil attack in VANET. Intelligent and Cloud Computing. Singapore: Springer, 2020. pp. 471–480.
[99]

F. Al-Turjman and J. P. Lemayian, Intelligence, security, and vehicular sensor networks in Internet of Things (IoT)-enabled smart-cities: An overview, Comput. Electr. Eng., vol. 87, p. 106776, 2020.

[100]
N. Phull and P. Singh, A review on security issues in VANETs, in Proc. 6th Int. Conf. Computing for Sustainable Global Development (INDIACom ), New Delhi, India, 2019, pp. 1084–1088.
[101]

R. H. Et. al, A survey: Security challenges of vanet and their current solution, Turk. J. Comput. Math. Educ. TURCOMAT, vol. 12, no. 2, pp. 1239–1244, 2021.

[102]
I. Dhyani, N. Goel, G. Sharma, and B. Mallick, A reliable tactic for detecting black hole attack in vehicular ad hoc networks. Advances in Computer and Computational Sciences. Singapore: Springer, 2017. pp. 333–343.
[103]
N. T. Luong and D. Hoang, BAPRP: a machine learning approach to blackhole attacks prevention routing protocol in vehicular Ad Hoc networks, Int. J. Inf. Secur., vol. 22, no. 6, pp. 1547–1566, 2023.
[104]
A. Kumar and N. Gupta, A secure RSU based security against multiple attacks in VANET, in Proc. 3rd Int. Conf. Intelligent Sustainable Systems (ICISS ). Thoothukudi, India, 2020, pp. 1156–1163.
[105]
K. H. Mohammadani, K. Ali Memon, I. Memon, N. N. Hussaini, and H. Fazal, Preamble time-division multiple access fixed slot assignment protocol for secure mobile ad hoc networks, Int. J. Distrib. Sens. Netw., vol. 16, no. 5, p. 155014772092162, 2020.
[106]

P. Remya krishnan and P. Arun Raj Kumar, Detection and mitigation of smart blackhole and gray hole attacks in VANET using dynamic time warping, Wirel. Pers. Commun., vol. 124, no. 1, pp. 931–966, 2022.

[107]

J. Ni, X. Lin, and X. Shen, Toward privacy-preserving valet parking in autonomous driving era, IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2893–2905, 2019.

[108]
G. Luo, Q. Yuan, H. Zhou, N. Cheng, Z. Liu, F. Yang, and X. S. Shen, Cooperative vehicular content distribution in edge computing assisted 5G-VANET, China Commun., vol. 15, no. 7, pp. 1–17.
[109]
Y. Hassine and H. Touati, Vehicular platoons security: A review with an emphasis on sybil attacks, in Proc. 12th IFIP/IEEE Int. Conf. Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN ), Berlin, Germany, 2023, pp. 1–6.
[110]

K. Rashid, Y. Saeed, A. Ali, F. Jamil, R. Alkanhel, and A. Muthanna, An adaptive real-time malicious node detection framework using machine learning in vehicular ad-hoc networks (VANETs), Sensors, vol. 23, no. 5, pp. 2594, 2023.

[111]

J. Deng, J. Deng, P. Liu, H. Wang, J. Yan, D. Pan, and J. Liu, A survey on vehicular cloud network security, IEEE Access, vol. 11, pp. 136741–136757, 2023.

[112]
Y. Wang, Y. Ding, Q. Wu, Y. Wei, B. Qin, and H. Wang, pRide: Privacy-Preserving Ride Matching Over Road Networks for Online Ride-Hailing Service.
[113]

A. K. Malhi, S. Batra, and H. S. Pannu, Security of vehicular ad-hoc networks: A comprehensive survey, Comput. Secur., vol. 89, p. 101664, 2020.

[114]

Y. Zhou, R. Xu, Z. Qiao, B. Yang, Z. Xia, and M. Zhang, An anonymous and efficient multimessage and multireceiver certificateless signcryption scheme for VANET, IEEE Internet Things J., vol. 10, no. 24, pp. 22823–22835, 2023.

[115]

P. Upadhyay, S. J. Goyal, V. Marriboyina, and S. Kumar, Securing vehicular Internet of Things (V-IoT) communication in smart VANET infrastructure using multi-layered communication framework and novel threat detection algorithm, Int. J. Intell. Syst. Appl. Eng., vol. 12, no. 6s, pp. 789–803, 2024.

[116]
Z. Wang, Y. Liu, J. Wang, Z. Li, Z. Li, X. Yang, F. Qi, and H. Jia, A reliable physical layer key generation scheme based on RSS and LSTM network in VANET, IEEE Internet Things J., vol. 11, no. 1, pp. 692–707.
[117]

M. S. Sheikh, J. Liang, and W. Wang, A survey of security services, attacks, and applications for vehicular ad hoc networks (VANETs), Sensors, no. Basel, p. 3589, 2019.

[118]
W. Ben Jaballah, M. Conti, and C. Lal, A survey on software-defined VANETs: Benefits, challenges, and future directions, arXiv preprint arXiv:1904.04577, 2019.
[119]
F. Ahmad, F. Kurugollu, A. Adnane, R. Hussain, and F. Hussain, MARINE: man-in-the-middle attack resistant trust model in connected vehicles, IEEE Internet Things J., vol. 7, no. 4, pp. 3310–3322, 2020.
[120]
H. Wu, S. Kumari, and T.-Y. Wu, To analyze security requirements of two AKA protocols in WBAN and VANET. Advances in Smart Vehicular Technology, Transportation, Communication and Applications. Singapore: Springer Nature, 2023. pp. 491–500.
[121]

M. A. Ferrag, L. Maglaras, and A. Ahmim, Privacy-preserving schemes for ad hoc social networks: A survey, IEEE Commun. Surv. Tutor., vol. 19, no. 4, pp. 3015–3045, 2017.

[122]
J. Zhang, K. Zheng, D. Zhang, and B. Yan, AATMS: an anti-attack trust management scheme in VANET, IEEE Access, vol. 8, pp. 21077–21090, 2020.
[123]
P. Kohli, S. Sharma, and P. Matta, Security challenges, applications and vehicular authentication methods in VANET for smart traffic management, in Proc. 2nd Int. Conf. Intelligent Engineering and Management (ICIEM ), London, United Kingdom, 2021, pp. 327–332.
[124]

B. Palaniswamy, S. Camtepe, E. Foo, L. Simpson, M. Ali Rezazadeh Baee, and J. Pieprzyk, Continuous authentication for VANET, Veh. Commun., vol. 25, pp. 100255, 2020.

[125]
P. Shah and T. Kasbe, Detecting sybil attack, black hole attack and DoS attack in VANET using RSA algorithm, in Proc. Emerging Trends in Industry 4.0 (ETI 4.0 ). Raigarh, India, 2021, pp. 1–7.
[126]
B. K. Pattanayak, O. Pattnaik, and S. Pani, A novel approach to detection of and protection from sybil attack in VANET. Advances in Intelligent Computing and Communication. Singapore: Springer, 2020, pp. 240–247.
[127]
P. K. Singh, R. R. Gupta, S. K. Nandi, and S. Nandi, Machine learning based approach to detect wormhole attack, in VANETs, Web, Artificial Intelligence and Network Applications. Cham: Springer International Publishing, 2019, pp. 651–661.
[128]
A. Islam, S. Ranjan, A. P. Rawat, and S. Maity, A comprehensive survey on attacks andSecurity protocols for VANETs, Innovations in Computer Science and Engineering. Singapore: Springer, 2021, pp. 583–595.
[129]
M. Kamal, A. Barua, C. Vitale, C. Laoudias, and G. Ellinas, GPS location spoofing attack detection for enhancing the security of autonomous vehicles, in Proc. IEEE 94th Vehicular Technology Conf. (VTC2021-Fall ). Norman, OK, USA, 2021, pp. 1–7.
[130]
A. Sharma and A. Jaekel, Machine learning approach for detecting location spoofing in VANET, in Proc. Int. Conf. Computer Communications and Networks (ICCCN ), Athens, Greece, 2021, pp. 1–6.
[131]
K. Sireesha and S. Malladi, A survey of VANET security models and its issues on node level data transmission, in Proc. Second Int. Conf. Artificial Intelligence and Smart Energy (ICAIS ), Coimbatore, India, 2022, pp. 1409–1417.
[132]

S. A. Asra, Security issues of vehicular ad hoc networks (VANET): A systematic review, TIERS Inf. Technol. J., vol. 3, no. 1, pp. 17–27, 2022.

[133]

F. Azam, S. K. Yadav, N. Priyadarshi, S. Padmanaban, and R. C. Bansal, A comprehensive review of authentication schemes in vehicular ad-hoc network, IEEE Access, vol. 9, pp. 31309–31321, 2021.

[134]

O. E. Ojo, C. O. Iyadi, A. O. Oluwatope, and A. T. Akinwale, AyoPeer: The adapted ayo-game for minimizing free riding in peer-assisted network, Peer Peer Netw. Appl., vol. 13, no. 5, pp. 1672–1687, 2020.

[135]

Z. Ali, S. A. Chaudhry, M. S. Ramzan, and F. Al-Turjman, Securing smart city surveillance: A lightweight authentication mechanism for unmanned vehicles, IEEE Access, vol. 8, pp. 43711–43724, 2020.

[136]

S. A. Chaudhry, T. Shon, F. Al-Turjman, and M. H. Alsharif, Correcting design flaws: An improved and cloud assisted key agreement scheme in cyber physical systems, Comput. Commun., vol. 153, pp. 527–537, 2020.

[137]
M. A. Al-shareeda, M. Anbar, I. H. Hasbullah, S. Manickam, N. Abdullah, and M. M. Hamdi, Review of prevention schemes for replay attack in vehicular ad hoc networks (VANETs), in Proc. IEEE 3rd Int. Conf. Information Communication and Signal Processing (ICICSP ). Shanghai, China. IEEE, 2020, pp. 394–398.
[138]

Z. Lu, Q. Wang, G. Qu, H. Zhang, and Z. Liu, A blockchain-based privacy-preserving authentication scheme for VANETs, IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 27, no. 12, pp. 2792–2801, 2019.

[139]
A. Maria, V. Pandi, J. D. Lazarus, M. Karuppiah, and M. S. Christo, BBAAS: blockchain-based anonymous authentication scheme for providing secure communication in VANETs, Secur. Commun. Netw., vol. 2021, p. 6679882, 2021.
[140]

M. A. Al-Shareeda, M. Anbar, I. H. Hasbullah, and S. Manickam, Survey of authentication and privacy schemes in vehicular ad hoc networks, IEEE Sens. J., vol. 21, no. 2, pp. 2422–2433, 2021.

[141]

Y. Wang, W. Zhang, X. Wang, M. K. Khan, and P. Fan, Efficient privacy-preserving authentication scheme with fine-grained error location for cloud-based VANET, IEEE Trans. Veh. Technol., vol. 70, no. 10, pp. 10436–10449, 2021.

[142]

S. A. Jan, N. U. Amin, M. Othman, M. Ali, A. I. Umar, and A. Basir, A survey on privacy-preserving authentication schemes in VANETs: Attacks, challenges and open issues, IEEE Access, vol. 9, pp. 153701–153726, 2021.

[143]
M. M. Hamdi, Y. A. Yussen, and A. S. Mustafa, Integrity and Authentications for service security in vehicular ad hoc networks (VANETs): A Review, in Proc. 3rd Int. Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA ). Ankara, Turkey. IEEE, 2021, pp. 1–7.
[144]

E.-H. Diallo, O. Dib, and K. Al Agha, A scalable blockchain-based scheme for traffic-related data sharing in VANETs, Blockchain Res. Appl., vol. 3, no. 3, pp. 100087, 2022.

[145]
M. U. Aftab, M. Hussain, A. Lindgren, and A. Ghafoor, Towards A distributed ledger based verifiable trusted protocol for VANET, in Proc. Int. Conf. Digital Futures and Transformative Technologies (ICoDT2 ). Islamabad, Pakistan. IEEE, 2021, pp. 1–6.
[146]
M. R. Ghori, K. Z. Zamli, N. Quosthoni, M. Hisyam, and M. Montaser, Vehicular ad-hoc network (VANET): Review, in Proc. IEEE Int. Conf. Innovative Research and Development (ICIRD ).Bangkok, Thailand, 2018, pp. 1–6.
[147]

S. Sharma, A. Kaul, S. Ahmed, and S. Sharma, A detailed tutorial survey on VANETs: Emerging architectures, applications, security issues, and solutions, Int. J. Commun. Syst., vol. 34, no. 14, p. e4905, 2021.

[148]
A. Kumar, M. A. Shahid, A. Jaekel, N. Zhang, and M. Kneppers, Machine learning based detection of replay attacks in VANET, in Proc. NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symp., Miami, FL, USA, 2023, pp. 1–6.
[149]
N. Sasikaladevi and M. N. Reddy, Energy-efficient privacy preserving vehicle registration protocol for V2x communication in vanet. Advanced Computer Science Applications. New York: Apple Academic Press, 2023. pp. 337–349.
[150]

M. H. Junejo, A. A. Ab Rahman, R. A. Shaikh, and K. M. Yusof, Location closeness model for VANETs with integration of 5G, Procedia Comput. Sci., vol. 182, pp. 71–79, 2021.

[151]
T. Isobe and K. Minematsu, Breaking message integrity of an end-to-end encryption scheme of LINE, Computer Security. Cham: Springer International Publishing, 2018, pp. 249–268.
[152]

S. Tanwar, J. Vora, S. Tyagi, N. Kumar, and M. S. Obaidat, A systematic review on security issues in vehicular ad hoc network, Secur. Priv., vol. 1, no. 5, pp. e39, 2018.

[153]
S. R. Maskey, S. Badsha, S. Sengupta, and I. Khalil, ALICIA: applied intelligence in blockchain based VANET: Accident validation as a case study, Inf. Process. Manag., vol. 58, no. 3, p. 102508, 2021.
[154]

L. E. Funderburg and I.-Y. Lee, Efficient short group signatures for conditional privacy in vehicular ad hoc networks via ID caching and timed revocation, IEEE Access, vol. 9, pp. 118065–118076, 2021.

[155]
M. Obaidat, M. Khodjaeva, J. Holst, and M. Ben Zid, Security and privacy challenges in vehicular ad hoc networks. Connected Vehicles in the Internet of Things. Cham: Springer International Publishing, 2020. pp. 223–251.
[156]
A. Gauher, A. Umrani, and Y. Javed, Communication security in VANETs, in Proc. IEEE 17th Int. Conf. Smart Communities : Improving Quality of Life Using ICT, IoT and AI (HONET ), Charlotte, NC, USA. IEEE, 2020, p. 63–67.
[157]

A. P. Mdee, M. T. R. Khan, J. Seo, and D. Kim, Security compliant and cooperative pseudonyms swapping for location privacy preservation in VANETs, IEEE Trans. Veh. Technol., vol. 72, no. 8, pp. 10710–10723, 2023.

[158]

C. Wang, R. Huang, J. Shen, J. Liu, P. Vijayakumar, and N. Kumar, A novel lightweight authentication protocol for emergency vehicle avoidance in VANETs, IEEE Internet Things J., vol. 8, no. 18, pp. 14248–14257, 2021.

[159]
S. Yadav, N. K. Rajput, A. K. Sagar, and D. Maheshwari, Secure and reliable routing protocols for VANETs, in Proc. 4th Int. Conf. Computing Communication and Automation (ICCCA ), Greater Noida, India, 2018, pp. 1–5.
[160]
P. Yellanki and M. V. S. P. Narasimham, Secure routing protocol for VANETS using ECC, in Proc. Int. Conf. Computer Science, Engineering and Applications (ICCSEA ), Gunupur, India, 2020, pp. 1–5.
[161]
M. Gillani, A. Ullah, and H. A. Niaz, Trust management schemes for secure routing in VANETs: A survey, in Proc. 12th Int. Conf. Mathematics, Actuarial Science, Computer Science and Statistics (MACS ), Karachi, Pakistan, 2018, pp. 1–6.
[162]
S. Akter, M. S. Rahman, M. Z. A. Bhuiyan, and N. Mansoor, Towards secure communication in CR-VANETs through a trust-based routing protocol, in Proc. IEEE INFOCOM 2021 - IEEE Conf. Computer Communications Workshops (INFOCOM WKSHPS ), Vancouver, BC, Canada, 2021, pp. 1–6.
[163]

M. Y. Saidabad, H. Hassanzadeh, S. H. Seyed Ebrahimi, E. Khezri, M. R. Rahimi, and M. Trik, An efficient approach for multi-label classification based on Advanced Kernel-Based Learning System, Intell. Syst. Appl., vol. 21, p. 200332, 2024.

[164]

Y. Pramitarini, R. H. Y. Perdana, T. N. Tran, K. Shim, and B. An, A hybrid price auction-based secure routing protocol using advanced speed and cosine similarity-based clustering against sinkhole attack in VANETs, Sensors, no. Basel, p. 5811, 2022.

[165]
J. Hou, J. Liu, L. Han, and J. Zhao, Secure and efficient protocol for position-based routing in VANETs, in Proc. IEEE Int. Conf. Intelligent Control, Automatic Detection and High-End Equipment, Beijing, China, 2012, pp. 142–148.
[166]

A. Ganesh, S. Ayyasamy, and N. M. Saravana Kumar, Performance and analysis of advanced and enhanced security protocol for vehicular ad hoc networks (VANETs), Wirel. Pers. Commun., vol. 121, no. 4, pp. 3163–3183, 2021.

[167]
A. Wasef and X. Shen, EMAP: expedite message authentication protocol for vehicular ad hoc networks, IEEE Trans. Mob. Comput., vol. 12, no. 1, pp. 78–89, 2011.
[168]
N. B. Bhavesh, S. Maity, and R. C. Hansdah, A protocol for authentication with multiple levels of anonymity (AMLA) in VANETs, in Proc. 27th Int. Conf. Advanced Information Networking and Applications Workshops, Barcelona, Spain, 2013, pp. 462–469.
[169]
G. Bellikar, A. Bhatia, R. C. Hansdah, and S. Singh, 3TAAV: A three-tier architecture for pseudonym-based anonymous authentication in VANETs, in Proc. Int. Conf. Information Networking (ICOIN ), Chiang Mai, Thailand, 2018, pp. 420–425.
[170]

J. A. Martinez, D. Vigueras, F. J. Ros, and P. M. Ruiz, Evaluation of the use of guard nodes for securing the routing in VANETs, J. Commun. Netw., vol. 15, no. 2, pp. 122–131, 2013.

[171]
A. Slama, I. Lengliz, and A. Belghith, TCSR: An AIMD trust-based protocol for secure routing in VANET, in Proc. Int. Conf. Smart Communications and Networking (SmartNets ), Yasmine Hammamet, Tunisia, 2018, pp. 1–8.
[172]

O. Abumansoor and A. Boukerche, A secure cooperative approach for nonline-of-sight location verification in VANET, IEEE Trans. Veh. Technol., vol. 61, no. 1, pp. 275–285, 2011.

[173]
B. Zubairu, Novel approach of spoofing attack in VANET location verification for non-line-of-sight (NLOS). Innovations in Computational Intelligence. Singapore: Springer, 2017. pp. 45–59.
[174]
T. Gazdar, A. Rachedi, A. Benslimane, and A. Belghith, A distributed advanced analytical trust model for VANETs, in Proc. IEEE Global Communications Conf. (GLOBECOM ), Anaheim, CA, USA, 2012, pp. 201–206.
[175]

A. Chinnasamy, S. Prakash, and P. Selvakumari, Enhance trust based routing techniques against sinkhole attack in AODV based VANET, Int. J. Comput. Appl., vol. 65, pp. 22–27, 2007.

[176]
R. Sharma and A. Chaudhary, End-to-end delay enhancement with ring cluster AODV in VANET, in Proc. 3rd Int. Conf. Emerging Technologies in Computer Engineering : Machine Learning and Internet of Things (ICETCE ), Jaipur, India, 2020, pp. 1–10.
[177]

A. Ganesh, S. Ayyasamy, and N. M. Saravanaa Kumar, Enhancing the security of routing in vehicular ad hoc networks, Int. J. Commun. Syst., vol. 33, no. 18, p. e4597, 2020.

[178]

S. K. Dhurandher, M. S. Obaidat, A. Jaiswal, A. Tiwari, and A. Tyagi, Vehicular security through reputation and plausibility checks, IEEE Syst. J., vol. 8, no. 2, pp. 384–394, 2014.

[179]

M. A. Gawas and S. Govekar, State-of-art and open issues of cross-layer design and QOS routing in Internet of vehicles, Wirel. Pers. Commun., vol. 116, no. 3, pp. 2261–2297, 2021

[180]
J. Oluoch, A distributed reputation scheme for situation awareness in Vehicular Ad Hoc Networks (VANETs), in Proc. IEEE Int. Multi-Disciplinary Conf. Cognitive Methods in Situation Awareness and Decision Support (CogSIMA ), San Diego, CA, USA, 2016, pp. 63–67.
[181]

T. Gazdar, A. Belghith, and H. Abutair, An enhanced distributed trust computing protocol for VANETs, IEEE Access, vol. 6, pp. 380–392, 2017.

[182]
A. Rehman, M. F. Hassan, Y. K. Hooi, M. A. Qureshi, S. Shukla, E. Susanto, S. Rubab, and A.-H. Abdel-Aty, CTMF: context-aware trust management framework for Internet of vehicles, IEEE Access, vol. 10, pp. 73685–73701, 2022.
[183]

A. M. R. Tolba, Trust-based distributed authentication method for collision attack avoidance in VANETs, IEEE Access, vol. 6, pp. 62747–62755, 2018.

[184]
C. Harsch, A. Festag, and P. Papadimitratos, Secure position-based routing for VANETs, in Proc. IEEE 66th Vehicular Technology Conference, Baltimore, MD, USA, 2007, pp. 26–30.
[185]

S. Sharma and E. Sandeep Kad, A review on social based routing schemes in vanets, Int. J. Eng. Tech. Res. IJETR, vol. 8, no. 12, pp. 14–18, 2018.

[186]

Y. Sun, R. Lu, X. Lin, X. Shen, and J. Su, An efficient pseudonymous authentication scheme with strong privacy preservation for vehicular communications, IEEE Trans. Veh. Technol., vol. 59, no. 7, pp. 3589–3603, 2010.

[187]

S. Ahmed, N. V. K. Ramesh, and B. N. K. Reddy, A highly secured QoS aware routing algorithm for software defined vehicle ad-hoc networks using optimal trust management scheme, Wirel. Pers. Commun., vol. 113, no. 4, pp. 1807–1821, 2020.

[188]

E. Ahmed and H. Gharavi, Cooperative vehicular networking: A survey, IEEE Trans. Intell. Transp. Syst., vol. 19, no. 3, pp. 996–1014, 2018.

[189]

Q. Wang, D. Gao, and D. Chen, Certificate revocation schemes in vehicular networks: A survey, IEEE Access, vol. 8, pp. 26223–26234, 2020.

[190]
R. I. Meneguette, A. Boukerche, and A. H. M. Pimenta, AVARAC: an availability-based resource allocation scheme for vehicular cloud, IEEE Trans. Intell. Transp. Syst., vol. 20, no. 10, pp. 3688–3699, 2018.
[191]
C. A. Kerrache, F. Ahmad, Z. Ahmad, N. Lagraa, F. Kurugollu, and N. Benamar, Towards an efficient vehicular clouds using mobile brokers, in Proc. Int. Conf. Computer and Information Sciences (ICCIS ). Sakaka, Saudi Arabia. IEEE, 2019, pp. 1–5.
[192]

A. Thakur and R. Malekian, Fog computing for detecting vehicular congestion, an Internet of vehicles based approach: A review, IEEE Intell. Transp. Syst. Mag., vol. 11, no. 2, pp. 8–16, 2019.

[193]

C. Huang, R. Lu, and K. R. Choo, Vehicular fog computing: Architecture, use case, and security and forensic challenges, IEEE Commun. Mag., vol. 55, no. 11, pp. 105–111, 2017.

[194]
M. Wazid, P. Bagga, A. K. Das, S. Shetty, J. J. P. C. Rodrigues, and Y. Park, AKM-IoV: Authenticated key management protocol in fog computing-based Internet of vehicles deployment, IEEE Internet Things J., vol. 6, no. 5, pp. 8804–8817, 2019.
[195]
A. Vishwanath, R. Peruri, and J. He, Security in fog computing through encryption. DigitalCommons@ Kennesaw State University Kennesaw, Georgia, USA, 2016.
[196]

S. Khan, S. Parkinson, and Y. Qin, Fog computing security: a review of current applications and security solutions, J. Cloud Comput. Adv. Syst. Appl., vol. 6, no. 1, pp. 1–22, 2017.

[197]

C.-C. Lin, D.-J. Deng, and C.-C. Yao, Resource allocation in vehicular cloud computing systems with heterogeneous vehicles and roadside units, IEEE Internet Things J., vol. 5, no. 5, pp. 3692–3700, 2018.

[198]

S.-R. Yang, Y.-J. Su, Y.-Y. Chang, and H.-N. Hung, Short-term traffic prediction for edge computing-enhanced autonomous and connected cars, IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3140–3153, 2019.

[199]

I. Sorkhoh, D. Ebrahimi, R. Atallah, and C. Assi, Workload scheduling in vehicular networks with edge cloud capabilities, IEEE Trans. Veh. Technol., vol. 68, no. 9, pp. 8472–8486, 2019.

[200]
F. Dressler, G. S. Pannu, F. Hagenauer, M. Gerla, T. Higuchi, and O. Altintas, Virtual edge computing using vehicular micro clouds, in Proc. Int. Conf. Computing, Networking and Communications (ICNC ), Honolulu, HI, USA, 2019, pp. 537–541.
[201]

A. Mahmood, C. E. Casetti, C. F. Chiasserini, P. Giaccone, and J. Härri, The RICH prefetching in edge caches for in-order delivery to connected cars, IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 4–18, 2019.

[202]

J. Feng, Z. Liu, C. Wu, and Y. Ji, Mobile edge computing for the Internet of vehicles: Offloading framework and job scheduling, IEEE Veh. Technol. Mag., vol. 14, no. 1, pp. 28–36, 2018.

[203]
H. Chai, S. Leng, M. Zeng, and H. Liang, A hierarchical blockchain aided proactive caching scheme for Internet of vehicles, in Proc. ICC 2019 - 2019 IEEE Int. Conf. Communications (ICC ), Shanghai, China, 2019, pp. 1–6.
[204]

T. Jiang, H. Fang, and H. Wang, Blockchain-based Internet of vehicles: Distributed network architecture and performance analysis, IEEE Internet Things J., vol. 6, no. 3, pp. 4640–4649, 2018.

[205]

C. Chen, J. Wu, H. Lin, W. Chen, and Z. Zheng, A secure and efficient blockchain-based data trading approach for Internet of vehicles, IEEE Trans. Veh. Technol., vol. 68, no. 9, pp. 9110–9121, 2019.

[206]
D.-K. Choi, J.-H. Jung, S.-J. Koh, J.-I. Kim, and J. Park, In-vehicle infotainment management system in Internet-of-things networks, in Proc. Int. Conf. Information Networking (ICOIN ), Kuala Lumpur, Malaysia, 2019, pp. 88–92.
[207]
Y. Ni, L. Cai, J. He, A. Vinel, Y. Li, H. Mosavat-Jahromi, and J. Pan, Toward reliable and scalable Internet of vehicles: Performance analysis and resource management, Proc. IEEE, vol. 108, no. 2, pp. 324–340.
[208]
A. Philo Stephy, C. Preethi, and K. M. Prasad, Analysis of vehicle activities and live streaming using IOT, in Proc. Int. Conf. Communication and Signal Processing (ICCSP ). Chennai, India, 2019, pp. 754–757.
[209]
K. N. Bui and J. J. Jung, ACO-based dynamic decision making for connected vehicles in IoT system, IEEE Trans. Ind. Inform., vol. 15, no. 10, pp. 5648–5655, 2019.
[210]

R. Florin, A. Ghazizadeh, P. Ghazizadeh, S. Olariu, and D. C. Marinescu, Enhancing reliability and availability through redundancy in vehicular clouds, IEEE Trans. Cloud Comput., vol. 9, no. 3, pp. 1061–1074, 2019.

[211]
S. A. Hussain, K. M. Yusof, S. M. Hussain, and A. V. Singh, A review of quality of service issues in Internet of vehicles (IoV), in Proc. Amity Int. Conf. Artificial Intelligence (AICAI ), Dubai, United Arab Emirates, 2019, pp. 380–383.
[212]

K. Z. Ghafoor, L. Kong, D. B. Rawat, E. Hosseini, and A. S. Sadiq, Quality of service aware routing protocol in software-defined Internet of vehicles, IEEE Internet Things J., vol. 6, no. 2, pp. 2817–2828, 2019.

[213]
D. Raj, Performance evaluation of QoS in marine vehicle to infrastructure (V2I) network, in Proc. Int. Conf. COMmunication Systems & NETworkS (COMSNETS ), Bengaluru, India, 2020, pp. 876–878.
[214]

N. Tamani, B. Brik, N. Lagraa, and Y. Ghamri-Doudane, On link stability metric and fuzzy quantification for service selection in mobile vehicular cloud, IEEE Trans. Intell. Transp. Syst., vol. 21, no. 5, pp. 2050–2062, 2019.

[215]
D. Liu, X. Cao, X. Zhou, and M. Zhang, Cold chain logistics information monitoring platform based on Internet of vehicles, in Proc. Int. Conf. Intelligent Transportation, Big Data & Smart City (ICITBS ), Changsha, China, 2019, pp. 348–351.
[216]
Y. Li, Q. Luo, J. Liu, H. Guo, and N. Kato, TSP security in intelligent and connected vehicles: Challenges and solutions, IEEE Wirel. Commun., vol. 26, no. 3, pp. 125–131, 2019.
[217]

I. García-Magariño, S. Sendra, R. Lacuesta, and J. Lloret, Security in vehicles with IoT by prioritization rules, vehicle certificates, and trust management, IEEE Internet Things J., vol. 6, no. 4, pp. 5927–5934, 2019.

[218]

X. Wang, Z. Ning, X. Hu, L. Wang, B. Hu, J. Cheng, and V. C. M. Leung, Optimizing content dissemination for real-time traffic management in large-scale Internet of vehicle systems, IEEE Trans. Veh. Technol., vol. 68, no. 2, p. 1093, 1105.

[219]

W. Chen, Y. Chen, X. Chen, and Z. Zheng, Toward secure data sharing for the IoV: A quality-driven incentive mechanism with on-chain and off-chain guarantees, IEEE Internet Things J., vol. 7, no. 3, pp. 1625–1640, 2020.

[220]
Y. Kim and T.-J. Lee, V2IoT communication systems for road safety, IEEE Wirel. Commun. Lett., vol. 8, no. 5, pp. 1460–1463, 2019.
[221]

M. Liwang, J. Wang, Z. Gao, X. Du, and M. Guizani, Game theory based opportunistic computation offloading in cloud-enabled IoV, IEEE Access, vol. 7, pp. 32551–32561, 2019.

[222]

M. U. Ghazi, M. A. Khan Khattak, B. Shabir, A. W. Malik, and M. Sher Ramzan, Emergency message dissemination in vehicular networks: A review, IEEE Access, vol. 8, pp. 38606–38621, 2020.

[223]

J. Cao, M. Ma, H. Li, R. Ma, Y. Sun, P. Yu, and L. Xiong, A survey on security aspects for 3GPP 5G networks, IEEE Commun. Surv. Tutor., vol. 22, no. 1, pp. 170–195, 2020

[224]

M. U. Aftab, Y. Munir, A. Oluwasanmi, Z. Qin, M. H. Aziz, Zakria, N. T. Son, and V. D. Tran, A hybrid access control model with dynamic COI for secure localization of satellite and IoT-based vehicles, IEEE Access, vol. 8, pp. 24196–24208, 2020.

[225]
S. Khan, H. Ali Khattak, A. Almogren, M. Ali Shah, I. Ud Din, I. Alkhalifa, and M. Guizani, 5G vehicular network resource management for improving radio access through machine learning, IEEE Access, vol. 8, pp. 6792–6800, 2020.
[226]

P. Bagga, A. K. Das, M. Wazid, J. J. P. C. Rodrigues, and Y. Park, Authentication protocols in Internet of vehicles: Taxonomy, analysis, and challenges, IEEE Access, vol. 8, pp. 54314–54344, 2020.

[227]

Z. Yang, K. Zhang, L. Lei, and K. Zheng, A novel classifier exploiting mobility behaviors for sybil detection in connected vehicle systems, IEEE Internet Things J., vol. 6, no. 2, pp. 2626–2636, 2018.

[228]

J. Cheng, H. Yan, A. Zhou, C. Liu, D. Cheng, S. Gao, D. Zang, and D. Cheng, Location prediction model based on the Internet of vehicles for assistance to medical vehicles, IEEE Access, vol. 8, pp. 10754–10767, 2019.

[229]

H. Xiong, J. Liu, R. Zhang, X. Zhu, and H. Liu, An accurate vehicle and road condition estimation algorithm for vehicle networking applications, IEEE Access, vol. 7, pp. 17705–17715, 2019.

[230]

C. Li, S. Wang, X. Huang, X. Li, R. Yu, and F. Zhao, Parked vehicular computing for energy-efficient Internet of vehicles: A contract theoretic approach, IEEE Internet Things J., vol. 6, no. 4, pp. 6079–6088, 2019.

[231]
D. A. Michel-Torres, L. F. Luque-Vega, E. Lopez-Neri, M. A. Carlos-Mancilla, and L. E. Gonzelez-Jimenez, IoT based smart vehicle presence sensor SPIN-V for smart parking system, in Proc. 14th Annual Conf. System of Systems Engineering (SoSE ), Anchorage, AK, USA, 2019, pp. 236–241.
[232]

S. S. Shah, M. Ali, A. W. Malik, M. A. Khan, and S. D. Ravana, vFog: A vehicle-assisted computing framework for delay-sensitive applications in smart cities, IEEE Access, vol. 7, pp. 34900–34909, 2019.

[233]

Xiaojie Wang|Xiang Wei|Lei Wang, A deep learning based energy-efficient computational offloading method in Internet of vehicles, China Commun., vol. 16, pp. 81–91, 2019.

[234]

Y. Hu, C. Chen, J. He, B. Yang, and X. Guan, IoT-based proactive energy supply control for connected electric vehicles, IEEE Internet Things J., vol. 6, no. 5, pp. 7395–7405, 2019.

[235]

A. O. Hariri, M. El Hariri, T. Youssef, and O. A. Mohammed, A bilateral decision support platform for public charging of connected electric vehicles, IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 129–140, 2018.

[236]

F. Kou, J. Du, W. Cui, L. Shi, P. Cheng, J. Chen, and J. Li, Common semantic representation method based on object attention and adversarial learning for cross-modal data in IoV, IEEE Trans. Veh. Technol., vol. 68, no. 12, pp. 11588–11598, 2019.

[237]

A. Ahmad, M. Khan, A. Paul, S. Din, M. M. Rathore, G. Jeon, and G. S. Choi, Toward modeling and optimization of features selection in Big Data based social Internet of Things, Future Gener. Comput. Syst., vol. 82, pp. 715–726, 2018.

[238]
A. Mahmood, H. Zen, and S. M. S. Hilles, Big data and privacy issues for connected vehicles in intelligent transportation systems, arXiv preprint arXiv:1806.02944, 2018.
[239]
J. A. Fadhil and Q. I. Sarhan, Internet of vehicles (IoV): A survey of challenges and solutions, in Proc. 21st Int. Arab Conf. Information Technology (ACIT ), Giza, Egypt, 2020, pp. 1–10.
Tsinghua Science and Technology
Pages 1700-1723
Cite this article:
Khezri E, Hassanzadeh H, Yahya RO, et al. Security Challenges in Internet of Vehicles (IoV) for ITS: A Survey. Tsinghua Science and Technology, 2025, 30(4): 1700-1723. https://doi.org/10.26599/TST.2024.9010083

503

Views

62

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 31 December 2023
Revised: 05 April 2024
Accepted: 03 May 2024
Published: 03 March 2025
© The Author(s) 2025.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return