AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Joint Task Offloading and Resource Allocation Strategy for Space-Air-Ground Integrated Vehicular Networks

School of Information and Communication Engineering, Beijing Information Science and Technology University, Beijing 100101, China
Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing 100101, China
Show Author Information

Abstract

Space-Air-Ground integrated Vehicular Network (SAGVN) aims to achieve ubiquitous connectivity and provide abundant computational resources to enhance the performance and efficiency of the vehicular networks. Nonetheless, there are still challenges to overcome, including the scheduling of multilayered computational resources and the scarcity of spectrum resources. To address these problems, we propose a joint Task Offloading (TO) and Resource Allocation (RA) strategy in SAGVN (namely JTRSS). This strategy establishes an SAGVN model that incorporates air and space networks to expand the options for vehicular TO, and enhances the edge-computing resources of the system by deploying edge servers. To minimize the system average cost, we use the JTRSS algorithm to decompose the original problem into a number of subproblems. A maximum rate matching algorithm is used to address the channel allocation and the Lagrangian multiplier method is employed for computational RA. To acquire the optimal TO decision, a differential fusion cuckoo search algorithm is designed. Extensive simulation results demonstrate the significant superiority of the JTRSS algorithm in optimizing the system average cost.

References

[1]

J. Ye, S. Dang, B. Shihada, and M.-S. Alouini, Space-air-ground integrated networks: Outage performance analysis, IEEE Trans. Wirel. Commun., vol. 19, no. 12, pp. 7897–7912, 2020.

[2]
J. Liu, Y. Shi, Z. M. Fadlullah, and N. Kato, Space-air-ground integrated network: A survey, IEEE Commun. Surv. Tutor., vol. 20, no. 4, pp. 2714−2741, 2018.
[3]

F. Tang, H. Hofner, N. Kato, K. Kaneko, Y. Yamashita, and M. Hangai, A deep reinforcement learning-based dynamic traffic offloading in space-air-ground integrated networks (SAGIN), IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 276–289, 2022.

[4]

X. Meng, N. Zhang, M. Jian, M. Kadoch, and D. Yang, Channel modeling and estimation for reconfigurable-intelligent-surface-based 6G SAGIN IoT, IEEE Internet Things J., vol. 10, no. 11, pp. 9273–9282, 2023.

[5]

Q. Chen, W. Meng, S. Han, C. Li, and T. Q. S. Quek, Coverage analysis of SAGIN with sectorized beam pattern under shadowed-rician fading channels, IEEE Trans. Commun., vol. 71, no. 8, pp. 4988–5004, 2023.

[6]

Q. Fang, Z. Zhai, S. Yu, Q. Wu, X. Gong, and X. Chen, Olive branch learning: A topology-aware federated learning framework for space-air-ground integrated network, IEEE Trans. Wirel. Commun., vol. 22, no. 7, pp. 4534–4551, 2023.

[7]

D. Zhou, M. Sheng, J. Wu, J. Li, and Z. Han, Gateway placement in integrated satellite–terrestrial networks: Supporting communications and internet of remote things, IEEE Internet Things J., vol. 9, no. 6, pp. 4421–4434, 2022.

[8]

K. N. Qureshi, S. Din, G. Jeon, and F. Piccialli, Internet of vehicles: Key technologies, network model, solutions and challenges with future aspects, IEEE Trans. Intell. Transp. Syst., vol. 22, no. 3, pp. 1777–1786, 2021.

[9]
F. Tang, B. Mao, N. Kato, and G. Gui, Comprehensive survey on machine learning in vehicular network: Technology, applications and challenges, IEEE Commun. Surv. Tutor., vol. 23, no. 3, pp. 2027−2057, 2021.
[10]

A. K. Sutrala, P. Bagga, A. K. Das, N. Kumar, J. J. P. C. Rodrigues, and P. Lorenz, On the design of conditional privacy preserving batch verification-based authentication scheme for internet of vehicles deployment, IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5535–5548, 2020.

[11]

R. Chaudhary and N. Kumar, SecGreen: Secrecy ensured power optimization scheme for software-defined connected IoV, IEEE Trans. Mob. Comput., vol. 22, no. 4, pp. 2370–2386, 2023.

[12]

W. Zhan, C. Luo, J. Wang, C. Wang, G. Min, H. Duan, and Q. Zhu, Deep-reinforcement-learning-based offloading scheduling for vehicular edge computing, IEEE Internet Things J., vol. 7, no. 6, pp. 5449–5465, 2020.

[13]

S. S. Shinde and D. Tarchi, Collaborative reinforcement learning for multi-service internet of vehicles, IEEE Internet Things J., vol. 10, no. 3, pp. 2589–2602, 2023.

[14]

X. Dai, Z. Xiao, H. Jiang, H. Chen, G. Min, S. Dustdar, and J. Cao, A learning-based approach for vehicle-to-vehicle computation offloading, IEEE Internet Things J., vol. 10, no. 8, pp. 7244–7258, 2023.

[15]

N. Cheng, W. Quan, W. Shi, H. Wu, Q. Ye, H. Zhou, W. Zhuang, X. Shen, and B. Bai, A comprehensive simulation platform for space-air-ground integrated network, IEEE Wirel. Commun., vol. 27, no. 1, pp. 178–185, 2020.

[16]

Y. Ju, Y. Chen, Z. Cao, L. Liu, Q. Pei, M. Xiao, K. Ota, M. Dong, and V. C. M. Leung, Joint secure offloading and resource allocation for vehicular edge computing network: A multi-agent deep reinforcement learning approach, IEEE Trans. Intell. Transp. Syst., vol. 24, no. 5, pp. 5555–5569, 2023.

[17]

J. Huang, J. Wan, B. Lv, Q. Ye, and Y. Chen, Joint computation offloading and resource allocation for edge-cloud collaboration in internet of vehicles via deep reinforcement learning, IEEE Syst. J., vol. 17, no. 2, pp. 2500–2511, 2023.

[18]

Z. Xiao, J. Shu, H. Jiang, G. Min, H. Chen, and Z. Han, Perception task offloading with collaborative computation for autonomous driving, IEEE J. Sel. Areas Commun., vol. 41, no. 2, pp. 457–473, 2023.

[19]

D. Pliatsios, P. Sarigiannidis, T. D. Lagkas, V. Argyriou, A.-A. A. Boulogeorgos, and P. Baziana, Joint wireless resource and computation offloading optimization for energy efficient internet of vehicles, IEEE Trans. Green Commun. Netw., vol. 6, no. 3, pp. 1468–1480, 2022.

[20]

M. Z. Alam and A. Jamalipour, Multi-agent DRL-based Hungarian algorithm (MADRLHA) for task offloading in multi-access edge computing internet of vehicles (IoVs), IEEE Trans. Wirel. Commun., vol. 21, no. 9, pp. 7641–7652, 2022.

[21]

X. Hou, Z. Ren, J. Wang, W. Cheng, Y. Ren, K. Chen, and H. Zhang, Reliable computation offloading for edge-computing-enabled software-defined IoV, IEEE Internet Things J., vol. 7, no. 8, pp. 7097–7111, 2020.

[22]

W. Fan, J. Liu, M. Hua, F. Wu, and Y. Liu, Joint task offloading and resource allocation for multi-access edge computing assisted by parked and moving vehicles, IEEE Trans. Veh. Technol., vol. 71, no. 5, pp. 5314–5330, 2022.

[23]

Z. Ning, K. Zhang, X. Wang, L. Guo, X. Hu, J. Huang, B. Hu, and R. Y. K. Kwok, Intelligent edge computing in internet of vehicles: A joint computation offloading and caching solution, IEEE Trans. Intell. Transp. Syst., vol. 22, no. 4, pp. 2212–2225, 2021.

[24]

J. Shi, J. Du, Y. Shen, J. Wang, J. Yuan, and Z. Han, DRL-based V2V computation offloading for blockchain-enabled vehicular networks, IEEE Trans. Mob. Comput., vol. 22, no. 7, pp. 3882–3897, 2023.

[25]

X. Ye, M. Li, P. Si, R. Yang, Z. Wang, and Y. Zhang, Collaborative and intelligent resource optimization for computing and caching in IoV with blockchain and MEC using A3C approach, IEEE Trans. Veh. Technol., vol. 72, no. 2, pp. 1449–1463, 2023.

[26]

N. Zhang, S. Zhang, P. Yang, O. Alhussein, W. Zhuang, and X. S. Shen, Software defined space-air-ground integrated vehicular networks: Challenges and solutions, IEEE Commun. Mag., vol. 55, no. 7, pp. 101–109, 2017.

[27]

G. Wang, S. Zhou, S. Zhang, Z. Niu, and X. Shen, SFC-based service provisioning for reconfigurable space-air-ground integrated networks, IEEE J. Sel. Areas Commun., vol. 38, no. 7, pp. 1478–1489, 2020.

[28]

F. Lyu, P. Yang, H. Wu, C. Zhou, J. Ren, Y. Zhang, and X. Shen, Service-oriented dynamic resource slicing and optimization for space-air-ground integrated vehicular networks, IEEE Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 7469–7483, 2022.

[29]

S. Yu, X. Gong, Q. Shi, X. Wang, and X. Chen, EC-SAGINs: Edge-computing-enhanced space-air-ground-integrated networks for internet of vehicles, IEEE Internet of Things J., vol. 9, no. 8, pp. 5742–5754, 2022.

[30]

Y. Hui, N. Cheng, Z. Su, Y. Huang, P. Zhao, T. H. Luan, and C. Li, Secure and personalized edge computing services in 6G heterogeneous vehicular networks, IEEE Internet of Things J., vol. 9, no. 8, pp. 5920–5931, 2022.

[31]

H. Wu, J. Chen, C. Zhou, W. Shi, N. Cheng, W. Xu, W. Zhuang, and X. S. Shen, Resource management in space-air-ground integrated vehicular networks: SDN control and AI algorithm design, IEEE Wirel. Commun., vol. 27, no. 6, pp. 52–60, 2020.

[32]

B. Cao, J. Zhang, X. Liu, Z. Sun, W. Cao, R. M. Nowak and Z. Lv, Edge-cloud resource scheduling in space-air-ground-integrated networks for internet of vehicles, IEEE Internet of Things J., vol. 9, no. 8, pp. 5765–5772, 2022.

[33]

W. Huang, T. Song, and J. An, QA2: QoS-guaranteed access assistance for space-air-ground internet of vehicle networks, IEEE Internet of Things J., vol. 9, no. 8, pp. 5684–5695, 2022.

[34]
Y. Maekawa, N. Kubota, and Y. Shibagaki, Effects of rain area motions on site diversity techniques in Ku band satellite signal attenuation, in Proc. Int. Symp. Antennas Propag. (ISAP ), Okinawa, Japan, 2016, pp. 76−77.
[35]

H. Li, H. Xu, C. Zhou, X. Lv, and Z. Han, Joint optimization strategy of computation offloading and resource allocation in multi-access edge computing environment, IEEE Trans. Veh. Technol., vol. 69, no. 9, pp. 10214–10226, 2020.

[36]

J. Zhang, H. Guo, J. Liu, and Y. Zhang, Task offloading in vehicular edge computing networks: A load-balancing solution, IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 2092–2104, 2020.

Tsinghua Science and Technology
Pages 1027-1043
Cite this article:
Gang Y, Zhang Y, Zhuo Z. Joint Task Offloading and Resource Allocation Strategy for Space-Air-Ground Integrated Vehicular Networks. Tsinghua Science and Technology, 2025, 30(3): 1027-1043. https://doi.org/10.26599/TST.2024.9010055

63

Views

7

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 14 December 2023
Revised: 24 February 2024
Accepted: 12 March 2024
Published: 26 June 2024
© The Author(s) 2025.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return