AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (875 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

A First Successful Factorization of RSA-2048 Integer by D-Wave Quantum Computer

Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China
Show Author Information

Abstract

Integer factorization, the core of the Rivest−Shamir−Adleman (RSA) attack, is an exciting but formidable challenge. As of this year, a group of researchers’ latest quantum supremacy chip remains unavailable for cryptanalysis. Quantum annealing (QA) has a unique quantum tunneling advantage, which can escape local extremum in the exponential solution space, finding the global optimal solution with a higher probability. Consequently, we consider it an effective method for attacking cryptography. According to Origin Quantum Computing, QA computers are able to factor numbers several orders of magnitude larger than universal quantum computers. We try to transform the integer factorization problem in RSA attacks into a combinatorial optimization problem by using the QA algorithm of D-Wave quantum computer, and attack RSA-2048 which is composed of a class of special integers. The experiment factored this class of integers of size 22048, N=p×q. As an example, the article gives the results of 10 RSA-2048 attacks in the appendix. This marks the first successful factorization of RSA-2048 by D-Wave quantum computer, regardless of employing mathematical or quantum techniques, despite dealing with special integers, exceeding 21061−1 of California State University. This experiment verifies that the QA algorithm based on D-Wave is an effective method to attack RSA.

References

[1]

J. Cao, D. Wang, and W. Wang, The research on security of RSA Public-Key cipher, (in Chinese), Computer Technology and Develop. Ment., vol. 17, no. 1, p. 3, 2007.

[2]

B. Wang, F. Hu, H. Zhang, and C. Wang, From Evolutionary Cryptography to Quantum Artificial Intelligent Cryptography, (in Chinese), J. Comput. Res. Dev, vol. 56, no. 10, pp. 2112­–2134, 2019.

[3]
J. Kelly. A Preview of Bristlecone, Google’s New Quantum Processor, https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html, 2018.
[4]
F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, et al., Quantum supremacy using a programmable superconducting processor, Nature, vol. 574, no. 7779, pp. 505–510, 2019.
[5]
A. D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A. J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, et al., Quantum critical dynamics in a 5,000-qubit programmable spin glass, Nature, vol. 617, no. 7959, pp. 61–66, 2023.
[6]
A. Morvan, B. Vilalonga, X.Mi, S. Mandra, A. Bengtsson, P. V. Klimov, Z. Chen, and S. Hong, Phase transition in random circuit sampling, arXiv preprint arXiv:2304.11119, 2023.
[7]
M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, et al., Quantum annealing with manufactured spins, Nature, vol. 473, no. 7346, pp. 194–198, 2011.
[8]

C. Wang and H. Zhang, The impact of commercial quantum computer on cryptography, (in Chinese), Inf. Secur. Commun. Priv, vol. 2, pp. 31–32, 2012.

[9]
A. J. Landahl and R. D. Somma, Quantum Speedup by Quantum Apealing, Sandia National Lab, 2012.
[10]

S. Morita and H. Nishimori, Convergence theorems for quantum annealing, J. Phys. A: Math. Gen, vol. 39, no. 45, p. 13903, 2006.

[11]

C. Wang, Y. Wang, and F. Hu, Shaping the future of commercial quantum computer and the challenge for information security, (in Chinese), J. Netw. Inf. Secur, vol. 2, no. 3, pp. 17–27, 2016.

[12]
C. Wang, H. Yao, B. Wang, F. Hu, H. Zhang, and X. Ji, Progress in Quantum Computing Cryptography Attacks, (in Chinese), Chinese J. Comput, vol. 43, no. 9, pp. 1691–1707, 2020.
[13]

S. Jiang, K. A. Britt, A. J. McCaskey, T. S. Humble, and S. Kais, Quantum annealing for prime factorization, Sci. Rep., vol. 8, no. 1, pp. 1–9, 2018.

[14]

W. Peng, B. Wang, F. Hu, Y. Wang, X. F, X. C, and C. Wang, Factoring larger integers with fewer qubits via quantum annealing with optimized parameters, Sci. China Phys. Mech. Astron., vol. 62, no. 06, pp. 1–8, 2019.

[15]

B. Wang, F. Hu, H. Yao, and C. Wang, Prime factorization algorithm based on parameter optimization of Ising model, Sci. Rep., vol. 10, no. 1, p. 7106, 2020.

[16]

C. Wang, Q. Hu, H. Yao, S. Wang, and Z. Pei, Deciphering a Million-Plus RSA Integer with Ultralow Local Field Coefficient h and Coupling Coefficient J of the Ising Model by D-Wave 2000Q, Tsinghua Science and Technology, vol. 29, no. 3, pp. 874–882, 2023.

[17]

F. X. Cui, B. Wang, Y. Liu, and Y. Li, Research status and prospect of quantum attack on public key cryptography, (in Chinese), Network Security and Data Governance, vol. 41, no. 3, pp. 3–12, 2022.

[18]
A. Herman, Q-Day Is Coming Sooner Than We Think. Available: https://www.forbes.com/sites/arthurherman/2021/06/07/q-day-is-coming-sooner-than-we-think/?sh=2b9e64a93f5d, 2021.
[19]
R Liu, G. G. Rozenman, N Kundu et al., Towards the industrialisation of quantum key distribution in communication networks: A short survey. IET Quantum Communication, vol. 3, no. 3, pp. 151–163, 2022.
[20]
G. G. Rozenman, N. K. Kundu, R. Liu et al., The quantum internet: A synergy of quantum information technologies and 6G networks. IET Quantum Communication, vol. 4, no. 4, pp. 147–166, 2023.
[21]
N. S. Dattani and N. Bryans, Quantum factorization of 56153 with only 4 qubits, arXiv preprint arXiv:1411.6758, 2014.
[22]
Z. Li, N. S. Dattani, X. Chen, X. Liu, H. Wang, R. Tanburn, H. Chen, X. Peng and J. Du, High-fidelity adiabatic quantum computation using the intrinsic Hamiltonian of a spin system: Application to the experimental factorization of 291311, arXiv preprint arXiv:1706.08061, 2017.
[23]
A. Dash, D. Sarmah, B. K. Behera, and P. K. Panigrahi, Exact search algorithm to factorize large biprimes and a triprime on IBM quantum computer, arXiv preprint arXiv:1805.10478, 2018.
[24]

A. H. Karamlou, W. A. Simon, A. Katabarwa, T. L. Scholten, B. Peropadre, and Y. Cao, Analyzing the performance of variational quantum factoring on a superconducting quantum processor, npj Quantum Inf., vol. 7, no. 1, pp. 1–6, 2021.

[25]
R. S. Kumar, K. Prakash, and S. Krishna, Cryptanalysis of RSA with composed decryption exponent with few most significant bits of one of the primes, J. Comput. Virol. Hack. Tech., https://doi.org/10.1007/s11416-023-00508-8, 2023.
[26]
K. Aoki, J. Franke, T. Kleinjung, A. K. Lenstra, and D. A. Osvik, A kilobit special number field sieve factorization, in Advances in Cryptology–ASIACRYPT 2007 : 13th International Conference on the Theory and Application of Cryptology and Information Security, Kuching, Malaysia, 2007, pp. 1–12.
[27]
G. Childers, Factorization of a 1061-bit number by the special number field sieve, https://eprint.iacr.org/2012/44, 2012.
[28]
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing, Science, vol. 220, no. 4598, pp. 671–680, 1983.
Tsinghua Science and Technology
Pages 1270-1282
Cite this article:
Wang C, Yu J, Pei Z, et al. A First Successful Factorization of RSA-2048 Integer by D-Wave Quantum Computer. Tsinghua Science and Technology, 2025, 30(3): 1270-1282. https://doi.org/10.26599/TST.2024.9010028

72

Views

20

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 21 November 2023
Revised: 25 January 2024
Accepted: 26 January 2024
Published: 30 December 2024
© The Author(s) 2025.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return