Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Workload prediction is critical in enabling proactive resource management of cloud applications. Accurate workload prediction is valuable for cloud users and providers as it can effectively guide many practices, such as performance assurance, cost reduction, and energy consumption optimization. However, cloud workload prediction is highly challenging due to the complexity and dynamics of workloads, and various solutions have been proposed to enhance the prediction behavior. This paper aims to provide an in-depth understanding and categorization of existing solutions through extensive literature reviews. Unlike existing surveys, for the first time, we comprehensively sort out and analyze the development landscape of workload prediction from a new perspective, i.e., application-oriented rather than prediction methodologies per se. Specifically, we first introduce the basic features of workload prediction, and then analyze and categorize existing efforts based on two significant characteristics of cloud applications: variability and heterogeneity. Furthermore, we also investigate how workload prediction is applied to resource management. Finally, open research opportunities in workload prediction are highlighted to foster further advancements.
M. G. Avram, Advantages and challenges of adopting cloud computing from an enterprise perspective, Procedia Technol., vol. 12, pp. 529–534, 2014.
M. N. O. Sadiku, S. M. Musa, and O. D. Momoh, Cloud computing: Opportunities and challenges, IEEE Potentials, vol. 33, no. 1, pp. 34–36, 2014.
J. Viega, Cloud computing and the common man, Computer, vol. 42, no. 8, pp. 106–108, 2009.
M. Masdari and A. Khoshnevis, A survey and classification of the workload forecasting methods in cloud computing, Clust. Comput., vol. 23, no. 4, pp. 2399–2424, 2020.
D. Saxena, J. Kumar, A. K. Singh, and S. Schmid, Performance analysis of machine learning centered workload prediction models for cloud, IEEE Trans. Parallel Distrib. Syst., vol. 34, no. 4, pp. 1313–1330, 2023.
S. Kashyap and A. Singh, Prediction-based scheduling techniques for cloud data center’s workload: a systematic review, Clust. Comput., vol. 26, no. 5, pp. 3209–3235, 2023.
B. Javadi, D. Kondo, A. Iosup, and D. Epema, The failure trace archive: Enabling the comparison of failure measurements and models of distributed systems, J. Parallel Distrib. Comput., vol. 73, no. 8, pp. 1208–1223, 2013.
K. Park and V. S. Pai, CoMon, SIGOPS Oper. Syst. Rev., vol. 40, no. 1, pp. 65–74, 2006.
D. G. Feitelson, D. Tsafrir, and D. Krakov, Experience with using the Parallel Workloads Archive, J. Parallel Distrib. Comput., vol. 74, no. 10, pp. 2967–2982, 2014.
U. Lublin and D. G. Feitelson, The workload on parallel supercomputers: Modeling the characteristics of rigid jobs, J. Parallel Distrib. Comput., vol. 63, no. 11, pp. 1105–1122, 2003.
R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, Workload prediction using ARIMA model and its impact on cloud applications’ QoS, IEEE Trans. Cloud Comput., vol. 3, no. 4, pp. 449–458, 2015.
E. Dhib, K. Boussetta, N. Zangar, and N. Tabbane, Cost, energy, and response delay awareness-solution for cloud resources management: Proposition of a predictive dynamic algorithm for VMs allocation over a distributed cloud infrastructure, J. Ambient Intell. Humaniz. Comput., vol. 13, no. 4, pp. 2119–2129, 2022.
A. Bala and I. Chana, Prediction-based proactive load balancing approach through VM migration, Eng. Comput., vol. 32, no. 4, pp. 581–592, 2016.
S. U. R. Baig, W. Iqbal, J. L. Berral, A. Erradi, and D. Carrera, Adaptive prediction models for data center resources utilization estimation, IEEE Trans. Netw. Serv. Manage., vol. 16, no. 4, pp. 1681–1693, 2019.
Z. Ahamed, M. Khemakhem, F. Eassa, F. Alsolami, A. Basuhail, and K. Jambi, Deep reinforcement learning for workload prediction in federated cloud environments, Sensors, vol. 23, no. 15, pp. 6911, 2023.
Z. Tian, S. Li, Y. Wang, and Y. Sha, A prediction method based on wavelet transform and multiple models fusion for chaotic time series, Chaos Solitons Fractals, vol. 98, pp. 158–172, 2017.
S. Jeddi and S. Sharifian, A hybrid wavelet decomposer and GMDH-ELM ensemble model for Network function virtualization workload forecasting in cloud computing, Appl. Soft Comput., vol. 88, p. 105940, 2020.
J. Kumar and A. K. Singh, Decomposition based cloud resource demand prediction using extreme learning machines, J. Netw. Syst. Manag., vol. 28, no. 4, pp. 1775–1793, 2020.
I. K. Kim, W. Wang, Y. Qi, and M. Humphrey, Forecasting cloud application workloads With CloudInsightfor predictive resource management, IEEE Trans. Cloud Comput., vol. 10, no. 3, pp. 1848–1863, 2022.
G. Kaur, A. Bala, and I. Chana, An intelligent regressive ensemble approach for predicting resource usage in cloud computing, J. Parallel Distrib. Comput., vol. 123, pp. 1–12, 2019.
L. Von Krannichfeldt, Y. Wang, and G. Hug, Online ensemble learning for load forecasting, IEEE Trans. Power Syst., vol. 36, no. 1, pp. 545–548, 2021.
K. Lalitha Devi and S. Valli, Time series-based workload prediction using the statistical hybrid model for the cloud environment, Computing, vol. 105, no. 2, pp. 353–374, 2023.
L. Bao, J. Yang, Z. Zhang, W. Liu, J. Chen, and C. Wu, On accurate prediction of cloud workloads with adaptive pattern mining, J. Supercomput., vol. 79, no. 1, pp. 160–187, 2023.
L. Li, M. Feng, L. Jin, S. Chen, L. Ma, and J. Gao, Domain knowledge embedding regularization neural networks for workload prediction and analysis in cloud computing, J. Inf. Technol. Res., vol. 11, no. 4, pp. 137–154, 2018.
K. K. D´esir´e, K. A. Francis, K. H. Kouassi, E. Dhib, N. Tabbane, and O. Asseu, “Fractional rider deep long short term memory network for workload predictionbased distributed resource allocation using spark in cloud gaming, Engineering, vol. 13, no. 03, pp. 135–157, 2021.
F. Ullah, M. Bilal, and S.-K. Yoon, Intelligent time-series forecasting framework for non-linear dynamic workload and resource prediction in cloud, Comput. Netw., vol. 225, p. 109653, 2023.
X. Wang, J. Cao, D. Yang, Z. Qin, and R. Buyya, Online cloud resource prediction via scalable window waveform sampling on classified workloads, Future Gener. Comput. Syst., vol. 117, pp. 338–358, 2021.
W. Matoussi and T. Hamrouni, A new temporal locality-based workload prediction approach for SaaS services in a cloud environment, J. King Saud Univ. Comput. Inf. Sci., vol. 34, no. 7, pp. 3973–3987, 2022.
X. Tang, Large-scale computing systems workload prediction using parallel improved LSTM neural network, IEEE Access, vol. 7, pp. 40525–40533, 2019.
J. Chen, K. Li, H. Rong, K. Bilal, K. Li, and P. S. Yu, A periodicity-based parallel time series prediction algorithm in cloud computing environments, Inf. Sci. Int. J., vol. 496, no. C, pp. 506–537, 2019.
J. Kumar and A. K. Singh, Workload prediction in cloud using artificial neural network and adaptive differential evolution, Future Gener. Comput. Syst., vol. 81, no. C, pp. 41–52, 2018.
J. Kumar, D. Saxena, A. K. Singh, and A. Mohan, BiPhase adaptive learning-based neural network model for cloud datacenter workload forecasting, Soft Comput. A Fusion Found. Methodol. Appl., vol. 24, no. 19, pp. 14593–14610, 2020.
D. Saxena and A. K. Singh, Auto-adaptive learning-based workload forecasting in dynamic cloud environment, Int. J. Comput. Appl., vol. 44, no. 6, pp. 541–551, 2022.
A. K. Singh, D. Saxena, J. Kumar, and V. Gupta, A quantum approach towards the adaptive prediction of cloud workloads, IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 12, pp. 2893–2905, 2021.
J. Kumar, A. K. Singh, and R. Buyya, Self directed learning based workload forecasting model for cloud resource management, Inf. Sci., vol. 543, pp. 345–366, 2021.
S. Ouhame, Y. Hadi, and A. Ullah, An efficient forecasting approach for resource utilization in cloud data center using CNN-LSTM model, Neural Comput. Appl., vol. 33, no. 16, pp. 10043–10055, 2021.
J. Dogani, F. Khunjush, M. R. Mahmoudi, and M. Seydali, Multivariate workload and resource prediction in cloud computing using CNN and GRU by attention mechanism, J. Supercomput., vol. 79, no. 3, pp. 3437–3470, 2023.
L. Zhang, Y. Xie, M. Jin, P. Zhou, G. Xu, Y. Wu, D. Feng, and D. Long, A novel hybrid model for docker container workload prediction, IEEE Trans. Netw. Serv. Manag., vol. 20, no. 3, pp. 2726–2743, 2023.
J. Chen and Y. Wang, An adaptive short-term prediction algorithm for resource demands in cloud computing, IEEE Access, vol. 8, pp. 53915–53930, 2020.
Y. Xie, M. Jin, Z. Zou, G. Xu, D. Feng, W. Liu, and D. Long, Real-time prediction of docker container resource load based on a hybrid model of ARIMA and triple exponential smoothing, IEEE Trans. Cloud Comput., vol. 10, no. 2, pp. 1386–1401, 2022.
O. Poppe, Q. Guo, W. Lang, P. Arora, M. Oslake, S. Xu, and A. Kalhan, Moneyball, Proc. VLDB Endow., vol. 15, no. 6, pp. 1279–1287, 2022.
R. F. da Silva, G. Juve, M. Rynge, E. Deelman, and M. Livny, Online task resource consumption prediction for scientific workflows, Parallel Process. Lett., vol. 25, no. 3, p. 1541003, 2015.
L. Ruan, Y. Bai, S. Li, S. He, and L. Xiao, Workload time series prediction in storage systems: a deep learning based approach, Clust. Comput., vol. 26, no. 1, pp. 25–35, 2023.
R. Liu, W. Sun, and W. Hu, Workload based geo-distributed data center planning in fast developing economies, IEEE Access, vol. 8, pp. 224269–224282, 2020.
G. Andreadis, F. Mastenbroek, V. van Beek, and A. Iosup, Capelin: Data-driven compute capacity procurement for cloud datacenters using portfolios of scenarios, IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 1, pp. 26–39, 2022.
L. Li, D. Shi, R. Hou, R. Chen, B. Lin, and M. Pan, Energy-efficient proactive caching for adaptive video streaming via data-driven optimization, IEEE Internet Things J., vol. 7, no. 6, pp. 5549–5561, 2020.
H. Bae and J. Park, Proactive service caching in a MEC system by using spatio-temporal correlation among MEC servers, Appl. Sci., vol. 13, no. 22, p. 12509, 2023.
M. Kumar, A. Kishor, J. K. Samariya, and A. Y. Zomaya, An autonomic workload prediction and resource allocation framework for fog-enabled industrial IoT, IEEE Internet Things J., vol. 10, no. 11, pp. 9513–9522, 2023.
X. Tang, Y. Liu, T. Deng, Z. Zeng, H. Huang, Q. Wei, X. Li, and L. Yang, A job scheduling algorithm based on parallel workload prediction on computational grid, J. Parallel Distrib. Comput., vol. 171, no. C, pp. 88–97, 2023.
B. Fei, X. Zhu, D. Liu, J. Chen, W. Bao, and L. Liu, Elastic resource provisioning using data clustering in cloud service platform, IEEE Trans. Serv. Comput., vol. 15, no. 3, pp. 1578–1591, 2022.
T. A. L. Genez, L. F. Bittencourt, N. L. S. da Fonseca, and E. R. M. Madeira, Estimation of the available bandwidth in inter-cloud links for task scheduling in hybrid clouds, IEEE Trans. Cloud Comput., vol. 7, no. 1, pp. 62–74, 2019.
S. Wang, Z. Ding, and C. Jiang, Elastic scheduling for microservice applications in clouds, IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 1, pp. 98–115, 2021.
E. F. Coutinho, F. R. de Carvalho Sousa, P. A. L. Rego, D. G. Gomes, and J. N. de Souza, Elasticity in cloud computing: A survey, Ann. Telecommun. Ann. Des Télécommunications, vol. 70, no. 7, pp. 289–309, 2015.
M. Abdullah, W. Iqbal, J. L. Berral, J. Polo, and D. Carrera, Burst-aware predictive autoscaling for containerized microservices, IEEE Trans. Serv. Comput., vol. 15, no. 3, pp. 1448–1460, 2022.
M. A. Razzaq, J. A. Mahar, M. Ahmad, N. Saher, A. Mehmood, and G. S. Choi, Hybrid auto-scaled service-cloud-based predictive workload modeling and analysis for smart campus system, IEEE Access, vol. 9, pp. 42081–42089, 2021.
A. Zhao, Q. Huang, Y. Huang, L. Zou, Z. Chen, and J. Song, Research on resource prediction model based on Kubernetes container auto-scaling technology, IOP Conf. Ser.: Mater. Sci. Eng., vol. 569, no. 5, p. 052092, 2019.
W. Iqbal, A. Erradi, and A. Mahmood, Dynamic workload patterns prediction for proactive auto-scaling of web applications, J. Netw. Comput. Appl., vol. 124, pp. 94–107, 2018.
A. Ali Khan, M. Zakarya, I. U. Rahman, R. Khan, and R. Buyya, HeporCloud: An energy and performance efficient resource orchestrator for hybrid heterogeneous cloud computing environments, J. Netw. Comput. Appl., vol. 173, p. 102869, 2021.
N. K. Biswas, S. Banerjee, U. Biswas, and U. Ghosh, An approach towards development of new linear regression prediction model for reduced energy consumption and SLA violation in the domain of green cloud computing, Sustain. Energy Technol. Assess., vol. 45, p. 101087, 2021.
R. Pushpalatha and B. Ramesh, Workload prediction based virtual machine migration and optimal switching strategy for cloud power management, Wirel. Pers. Commun., vol. 123, no. 1, pp. 761–784, 2022.
849
Views
108
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).