Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Cohesive subgraph search is a fundamental problem in bipartite graph analysis. Given integers
Y. Zhang, C. A. Phillips, G. L. Rogers, E. J. Baker, E. J. Chesler, and M. A. Langston, On finding bicliques in bipartite graphs: A novel algorithm and its application to the integration of diverse biological data types, BMC Bioinformatics, vol. 15, p. 110, 2014.
B. Lyu, L. Qin, X. Lin, Y. Zhang, Z. Qian, and J. Zhou, Maximum biclique search at billion scale, Proc. VLDB Endow., vol. 13, no. 9, pp. 1359–1372, 2020.
S. Selvan and R. V. Nataraj, Efficient mining of large maximal bicliques from 3D symmetric adjacency matrix, IEEE Trans. Knowl. Data Eng., vol. 22, no. 12, pp. 1797–1802, 2010.
K. Sim, J. Li, V. Gopalkrishnan, and G. Liu, Mining maximal quasi-bicliques: Novel algorithm and applications in the stock market and protein networks, Stat. Anal. Data Min., vol. 2, no. 4, pp. 255–273, 2009.
N. Mishra, D. Ron, and R. Swaminathan, A new conceptual clustering framework, Mach. Lang., vol. 56, nos. 1–3, pp. 115–151, 2004.
K. Yu and C. Long, Maximum k-biplex search on bipartite graphs: A symmetric-BK branching approach, Proc. ACM Manag. Data, vol. 1, no. 1, p. 49, 2023.
K. Yu, C. Long, P. Deepak, and T. Chakraborty, On efficient large maximal biplex discovery, IEEE Trans. Knowl. Data Eng., vol. 35, no. 1, pp. 824–829, 2021.
A. Tanay, R. Sharan, and R. Shamir, Discovering statistically significant biclusters in gene expression data, Bioinformatics, vol. 18, no. Suppl 1, pp. S136–S144, 2002.
R. Henriques and S. C. Madeira, BicNET: Flexible module discovery in large-scale biological networks using biclustering, Algorithms Mol. Biol., vol. 11, p. 14, 2016.
B. Lyu, L. Qin, X. Lin, Y. Zhang, Z. Qian, and J. Zhou, Maximum and top- k diversified biclique search at scale, VLDB J., vol. 31, no. 6, pp. 1365–1389, 2022.
L. Chang, M. Xu, and D. Strash, Efficient maximum k-plex computation over large sparse graphs, Proc. VLDB Endow., vol. 16, no. 2, pp. 127–139, 2022.
S. Trukhanov, C. Balasubramaniam, B. Balasundaram, and S. Butenko, Algorithms for detecting optimal hereditary structures in graphs, with application to clique relaxations, Comput. Optim. Appl., vol. 56, no. 1, pp. 113–130, 2013.
D. Eppstein, Arboricity and bipartite subgraph listing algorithms, Inf. Process. Lett., vol. 51, no. 4, pp. 207–211, 1994.
J. Li, G. Liu, H. Li, and L. Wong, Maximal biclique subgraphs and closed pattern pairs of the adjacency matrix: A one-to-one correspondence and mining algorithms, IEEE Trans. Knowl. Data Eng., vol. 19, no. 12, pp. 1625–1637, 2007.
L. Chen, C. Liu, R. Zhou, J. Xu, and J. Li, Efficient maximal biclique enumeration for large sparse bipartite graphs, Proc. VLDB Endow., vol. 15, no. 8, pp. 1559–1571, 2022.
M. Dawande, P. Keskinocak, J. M. Swaminathan, and S. Tayur, On bipartite and multipartite clique problems, J. Algoritms., vol. 41, no. 2, pp. 388–403, 2001.
J. Hartmanis, Computers and intractability: A guide to the theory of NP-completeness (Michael R. Garey and David S. Johnson), SIAM Rev., vol. 24, no. 1, pp. 90–91, 1982.
R. Peeters, The maximum edge biclique problem is NP-complete, Discrete Appl. Math., vol. 131, no. 3, pp. 651–654, 2003.
J. Wang, J. Yang, C. Zhang, and X. Lin, Efficient maximum edge-weighted biclique search on large bipartite graphs, IEEE Trans. Knowl. Data Eng., vol. 35, no. 8, pp. 7921–7934, 2023.
T. F. Gonzalez, Clustering to minimize the maximum intercluster distance, Theor. Comput. Sci., vol. 38, pp. 293–306, 1985.
524
Views
264
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).