Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Submodular function maximization problem has been extensively studied recently. A natural variant of submodular function is k-submodular function, which has many applications in real life, such as influence maximization and sensor placement problem. The domain of a k-submodular function has k disjoint subsets, and hence includes submodular function as a special case when k=1. This work investigates the k-submodular function maximization problem with d-knapsack constraints over the sliding window. Based on the smooth histogram technique, we design a deterministic approximation algorithm. Furthermore, we propose a randomized algorithm to improve the approximation ratio.
G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, An analysis of approximations for maximizing submodular set functions—I, Math. Program., vol. 14, no. 1, pp. 265–294, 1978.
G. L. Nemhauser and L. A. Wolsey, Best algorithms for approximating the maximum of a submodular set function, Math. Oper. Res., vol. 3, no. 3, pp. 177–188, 1978.
M. Sviridenko, A note on maximizing a submodular set function subject to a knapsack constraint, Oper. Res. Lett., vol. 32, no. 1, pp. 41–43, 2004.
G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, Maximizing a monotone submodular function subject to a matroid constraint, SIAM Journal on Computing, vol. 40, no. 6, pp. 1740–1766, 2011.
C. Qian, J.-C. Shi, K. Tang, and Z.-H. Zhou, Constrained monotone k-submodular function maximization using multiobjective evolutionary algorithms with theoretical guarantee, IEEE Trans. Evol. Comput., vol. 22, no. 4, pp. 595–608, 2018.
J. Ward and S. Živný, Maximizing k-submodular functions and beyond, ACM Trans. Algorithms, vol. 12, no. 4, pp. 1–26, 2016.
H. Oshima, Improved randomized algorithm for k-submodular function maximization, SIAM J. Discrete Math., vol. 35, no. 1, pp. 1–22, 2021.
S. Sakaue, On maximizing a monotone k-submodular function subject to a matroid constraint, Discrete Optim., vol. 23, pp. 105–113, 2017.
Z. Tang, C. Wang, and H. Chan, On maximizing a monotone k-submodular function under a knapsack constraint, Oper. Res. Lett., vol. 50, no. 1, pp. 28–31, 2022.
C.-C. Huang, N. Kakimura, and Y. Yoshida, Streaming algorithms for maximizing monotone submodular functions under a knapsack constraint, Algorithmica, vol. 82, no. 4, pp. 1006–1032, 2020.
C.-C. Huang and N. Kakimura, Improved streaming algorithms for maximizing monotone submodular functions under a knapsack constraint, Algorithmica, vol. 83, no. 3, pp. 879–902, 2021.
Q. Yu, L. Xu, and S. Cui, Streaming algorithms for news and scientific literature recommendation: Monotone submodular maximization with a Knapsack constraint, IEEE Access, vol. 6, pp. 53736–53747, 2018.
R. Kumar, B. Moseley, S. Vassilvitskii, and A. Vattani, Fast greedy algorithms in MapReduce and streaming, ACM Trans. Parallel Comput., vol. 2, no. 3, pp. 1–22, 2015.
C. V. Pham, Q. C. Vu, D. K. T. Ha, T. T. Nguyen, and N. D. Le, Maximizing k-submodular functions under budget constraint: Applications and streaming algorithms, J. Comb. Optim., vol. 44, no. 1, pp. 723–751, 2022.
Y. Wang, Y. Li, and K.-L. Tan, Efficient representative subset selection over sliding windows, IEEE Trans. Knowl. Data Eng., vol. 31, no. 7, pp. 1327–1340, 2019.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).