[1]
K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, 2014.
[2]
K. M. He, X. Y. Zhang, S. Q. Ren, and J. Sun, Deep residual learning for image recognition, in Proc. 2016 IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 770–778.
[17]
Y. W. Pang, J. L. Cao, J. Wang, and J. G. Han, JCS-Net: Joint classification and super-resolution network for small-scale pedestrian detection in surveillance images, IEEE Trans. Inform. Forensics Secur., vol. 14, no. 12, pp. 3322–3331, 2019.
[18]
P. Rasti, T. Uiboupin, S. Escalera, and G. Anbarjafari, Convolutional neural network super resolution for face recognition in surveillance monitoring, in Proc. 9 th Int. Conf. Articulated Motion and Deformable Objects, Palma de Mallorca, Spain, 2016, pp. 175–184.
[19]
A. Watson, Deep learning techniques for super-resolution in video games, arXiv preprint arXiv: 2012.09810, 2020.
[20]
E. Liu, DLSS 2.0-Image reconstruction for real-time rendering with deep learning, https://developer.nvidia.com/gtc/2020/video/s22698-vid, 2020.
[21]
J. J. Gu, H. M. Cai, C. Y. Dong, R. F. Zhang, Y. L. Zhang, W. M. Yang, and C. Yuan, Super-resolution by predicting offsets: An ultra-efficient super-resolution network for rasterized images, in Proc. 17 th European Conf. Computer Vision, Tel Aviv, Israel, 2022, pp. 583–598.
[22]
J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and F. F. Li, ImageNet: A large-scale hierarchical image database, in Proc. 2009 IEEE Conf. Computer Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 248–255.
[24]
Y. Cheng, D. Wang, P. Zhou, and T. Zhang, A survey of model compression and acceleration for deep neural networks, arXiv preprint arXiv: 1710.09282, 2017.
[25]
X. Y. Zhang, X. Y. Zhou, M. X. Lin, and J. Sun, ShuffleNet: An extremely efficient convolutional neural network for mobile devices, in Proc. 2018 IEEE/CVF Conf. Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 6848–6856.
[26]
H. Chang, D. Y. Yeung, and Y. M. Xiong, Super-resolution through neighbor embedding, in Proc. 2004 IEEE Computer Society Conf. Computer Vision and Pattern Recognition, Washington, DC, USA.
[27]
A. Lukin, A. S. Krylov, and A. Nasonov, Image interpolation by super-resolution, in Proc. 16 th Int. Conf. Computer Graphics and Vision GraphiCon’2006, Novosibirsk Akademgorodok, Russia, 2006, pp. 239−242.
[29]
C. Dong, C. C. Loy, and X. O. Tang, Accelerating the super-resolution convolutional neural network, in Proc. 14 th European Conf. Computer Vision, Amsterdam, the Netherlands, 2016, pp. 391–407.
[30]
C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. H. Wang, et al., Photo-realistic single image super-resolution using a generative adversarial network, in Proc. 2017 IEEE Conf. Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, pp. 4681–4690.
[31]
L. Beyer, O. J. Hénaff, A. Kolesnikov, X. H. Zhai, and A. van den Oord, Are we done with ImageNet, arXiv preprint arXiv: 2006.07159, 2020.
[32]
D. Tsipras, S. Santurkar, L. Engstrom, A. Ilyas, and A. Mądry, From imagenet to image classification: Contextualizing progress on benchmarks, in Proc. 37 th Int. Conf. Machine Learning, Vienna, Austria, 2020, p. 892.
[33]
M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. de Freitas, Predicting parameters in deep learning, in Proc. 26 th Int. Conf. on Neural Information Processing Systems, Lake Tahoe, NV, USA, 2013, pp. 2148–2156.
[34]
A. G. Howard, M. L. Zhu, B. Chen, D. Kalenichenko, W. J. Wang, T. Weyand, M. Andreetto, and H. Adam, MobileNets: Efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv: 1704.04861, 2017.
[35]
F. Chollet, Xception: Deep learning with depthwise separable convolutions, in Proc. 2017 IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, pp. 1251–125.
[36]
L. Kaiser, A. N. Gomez, and F. Chollet, Depthwise separable convolutions for neural machine translation, arXiv preprint arXiv:1706.03059, 2017.
[37]
K. Han, Y. H. Wang, Q. Tian, J. Y. Guo, C. J. Xu, and C. Xu, GhostNet: More features from cheap operations, in Proc. 2020 IEEE/CVF Conf. Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020, pp. 1580–1589.
[39]
R. J. Wang, B. Jiang, C. Yang, Q. Li, and B. L. Zhang, MAGAN: Unsupervised low-light image enhancement guided by mixed-attention, Big Data Mining and Analytics, vol. 5, no. 2, pp. 110–119, 2022.
[41]
I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, Improved training of wasserstein GANs, in Proc. 31 st Int. Conf. Neural Information Processing Systems, Long Beach, CA, USA, 2017, pp. 5769–5779.