[1]
J. Li, A. M. V. V. Sai, X. Cheng, W. Cheng, Z. Tian, and Y. Li, Sampling-based approximate skyline query in sensor equipped IoT networks, Tsinghua Science and Technology, vol. 26, no. 2, pp. 219–229, 2020.
[2]
J. Li, M. Siddula, X. Cheng, W. Cheng, Z. Tian, and Y. Li, Approximate data aggregation in sensor equipped IoT networks, Tsinghua Science and Technology, vol. 25, no. 1, pp. 44–55, 2019.
[3]
R. Shahzadi, M. Ali, H. Z. Khan, and M. Naeem, UAV assisted 5G and beyond wireless networks: A survey, J. Netw. Comput. Appl., vol. 189, p. 103114, 2021.
[4]
B. Li, Z. Fei, and Y. Zhang, UAV communications for 5G and beyond: Recent advances and future trends, IEEE Internet Things J., vol. 6, no. 2, pp. 2241–2263, 2019.
[5]
A. D. Boursianis, M. S. Papadopoulou, P. Diamantoulakis, A. Liopa-Tsakalidi, P. Barouchas, G. Salahas, G. Karagiannidis, S. Wan, and S. K. Goudos, Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review, Internet of Things, vol. 18, p. 100187, 2022.
[6]
S. Zhang and J. Liu, Analysis and optimization of multiple unmanned aerial vehicle-assisted communications in post-disaster areas, IEEE Trans. Veh. Technol., vol. 67, no. 12, pp. 12049–12060, 2018.
[7]
X. Liu, X. Wang, J. Jia, and M. Huang, A distributed deployment algorithm for communication coverage in wireless robotic networks, J. Netw. Comput. Appl., vol. 180, p. 103019, 2021.
[8]
S. Aslan, H. Badem, and D. Karaboga, Improved quick artificial bee colony (iqABC) algorithm for global optimization, Soft Comput., vol. 23, no. 24, pp. 13161–13182, 2019.
[9]
X. Liu, X. Wang, M. Huang, J. Jia, N. Bartolini, Q. Li, and D. Zhao, Deployment of UAV-BSs for on-demand full communication coverage, Ad Hoc Netw., vol. 140, p. 103047, 2023.
[10]
M. Alzenad, A. El-Keyi, F. Lagum, and H. Yanikomeroglu, 3-D placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage, IEEE Wirel. Commun. Lett., vol. 6, no. 4, pp. 434–437, 2017.
[11]
L. Yin, N. Zhang, and C. Tang, On-demand UAV base station deployment for wireless service of crowded tourism areas, Pers. Ubiquitous Comput., vol. 26, no. 4, pp. 1137–1149, 2022.
[12]
J. Lyu, Y. Zeng, R. Zhang, and T. J. Lim, Placement optimization of UAV-mounted mobile base stations, IEEE Commun. Lett., vol. 21, no. 3, pp. 604–607, 2017.
[13]
H. Zhao, H. Wang, W. Wu, and J. Wei, Deployment algorithms for UAV airborne networks toward on-demand coverage, IEEE J. Sel. Areas Commun., vol. 36, no. 9, pp. 2015–2031, 2018.
[14]
A. Trotta, M. D. Felice, F. Montori, K. R. Chowdhury, and L. Bononi, Joint coverage, connectivity, and charging strategies for distributed UAV networks, IEEE Trans. Robot., vol. 34, no. 4, pp. 883–900, 2018.
[15]
L. Ruan, J. Wang, J. Chen, Y. Xu, Y. Yang, H. Jiang, Y. Zhang, and Y. Xu, Energy-efficient multi-UAV coverage deployment in UAV networks: A game-theoretic framework, China Commun., vol. 15, no. 10, pp. 194–209, 2018.
[16]
X. Zhang and L. Duan, Optimization of emergency UAV deployment for providing wireless coverage, in Proc. GLOBECOM 2017 - 2017 IEEE Global Communications Conf., Singapore, 2018, pp. 1–6.
[17]
X. Zhang and L. Duan, Fast deployment of UAV networks for optimal wireless coverage, IEEE Trans. Mob. Comput., vol. 18, no. 3, pp. 588–601, 2019.
[18]
N. T. Hanh, H. T. T. Binh, N. X. Hoai, and M. S. Palaniswami, An efficient genetic algorithm for maximizing area coverage in wireless sensor networks, Inf. Sci., vol. 488, pp. 58–75, 2019.
[19]
D. G. Reina, H. Tawfik, and S. L. Toral, Multi-subpopulation evolutionary algorithms for coverage deployment of UAV-networks, Ad Hoc Netw., vol. 68, pp. 16–32, 2018.
[20]
B. Cao, J. Zhao, Z. Lv, X. Liu, X. Kang, and S. Yang, Deployment optimization for 3D industrial wireless sensor networks based on particle swarm optimizers with distributed parallelism, J. Netw. Comput. Appl., vol. 103, pp. 225–238, 2018.
[21]
J. Wang, C. Ju, Y. Gao, A. K. Sangaiah, and G. Kim, A PSO based energy efficient coverage control algorithm for wireless sensor networks, Comput., Mater. Contin., no. 9, pp. 433–446, 2018.
[22]
W. Du, W. Ying, P. Yang, X. Cao, G. Yan, K. Tang, and D. Wu, Network-based heterogeneous particle swarm optimization and its application in UAV communication coverage, IEEE Trans. Emerg. Top. Comput. Intell., vol. 4, no. 3, pp. 312–323, 2020.
[23]
T. Qasim, M. Zia, Q. A. Minhas, N. Bhatti, K. Saleem, T. Qasim, and H. Mahmood, An ant colony optimization based approach for minimum cost coverage on 3-D grid in wireless sensor networks, IEEE Commun. Lett., vol. 22, no. 6, pp. 1140–1143, 2018.
[24]
J. Li, D. Lu, G. Zhang, J. Tian, and Y. Pang, Post-disaster unmanned aerial vehicle base station deployment method based on artificial bee colony algorithm, IEEE Access, vol. 7, pp. 168327–168336, 2019.
[25]
X. Liu, X. Wang, J. Jia, J. Lv, and N. Bartolini, Distributed deployment in UAV-assisted networks for a long-lasting communication coverage, IEEE Syst. J., vol. 16, no. 3, pp. 4130–4138, 2022.
[26]
A. Al-Hourani, S. Kandeepan, and S. Lardner, Optimal LAP altitude for maximum coverage, IEEE Wirel. Commun. Lett., vol. 3, no. 6, pp. 569–572, 2014.
[27]
F. Aurenhammer and R. Klein, Voronoi diagrams, in Handbook of Computational Geometry, J. R. Sack and J. Urrutia, eds. Amsterdam, the Netherlands: North-Holland Publishing Co., 2000, pp. 201–290.
[28]
M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, Unmanned aerial vehicle with underlaid device-to-device communications: Performance and tradeoffs, IEEE Trans. Wirel. Commun., vol. 15, no. 6, pp. 3949–3963, 2016.
[29]
D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga, A comprehensive survey: Artificial bee colony (ABC) algorithm and applications, Artif. Intell. Rev., vol. 42, no. 1, pp. 21–57, 2014.
[30]
D. Karaboga and B. Basturk, A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm, J. Glob. Optim., vol. 39, no. 3, pp. 459–471, 2007.
[31]
D. Karaboga and B. Gorkemli, A quick artificial bee colony (qABC) algorithm and its performance on optimization problems, Appl. Soft Comput., vol. 23, pp. 227–238, 2014.
[32]
H. Mahboubi and A. G. Aghdam, Distributed deployment algorithms for coverage improvement in a network of wireless mobile sensors: Relocation by virtual force, IEEE Trans. Control Netw. Syst., vol. 4, no. 4, pp. 736–748, 2017.
[33]
H. Mahboubi, K. Moezzi, A. G. Aghdam, K. Sayrafian-Pour, and V. Marbukh, Distributed deployment algorithms for improved coverage in a network of wireless mobile sensors, IEEE Trans. Ind. Inform., vol. 10, no. 1, pp. 163–174, 2014.