References(47)
[1]
B. Kallehauge, J. Larsen, O. B. G. Madsen, and M. M. Solomon, Vehicle routing problem with time windows, in Column Generation, G. Desaulniers, J. Desrosiers, and M. M. Solomon, eds. New York, NY, USA: Springer, 2006. pp. 67–98.
[2]
K. Braekers, K. Ramaekers, and I. V. Nieuwenhuyse, The vehicle routing problem: State of the art classification and review, Comput. Ind. Eng., vol. 99, pp. 300–313, 2016.
[3]
J. Mańdziuk, New shades of the vehicle routing problem: Emerging problem formulations and computational intelligence solution methods, IEEE Trans. Emerg. Top. Comput. Intell., vol. 3, no. 3, pp. 230–244, 2019.
[4]
R. Baldacci, A. Mingozzi, and R. Roberti, Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints, Eur. J. Oper. Res., vol. 218, no. 1, pp. 1–6, 2012.
[5]
O. Bräysy and M. Gendreau, Vehicle routing problem with time windows, part II: Metaheuristics, Transp. Sci., vol. 39, no. 1, pp. 119–139, 2005.
[6]
A. Dixit, A. Mishra, and A. Shukla, Vehicle routing problem with time windows using meta-heuristic algorithms: A survey, in Harmony Search and Nature Inspired Optimization Algorithms, N. Yadav, A. Yadav, J. C. Bansal, K. Deep, and J. H. Kim, eds. Singapore: Springer, 2019: 539-546.
[7]
E. T. Yassen, M. Ayob, M. Z. Ahmad Nazri, and N. R. Sabar, An adaptive hybrid algorithm for vehicle routing problems with time windows, Comput. Ind. Eng., vol. 113, pp. 382–391, 2017.
[8]
Y. J. Gong, J. Zhang, O. Liu, R. Z. Huang, H. S. H. Chung, and Y. H. Shi, Optimizing the vehicle routing problem with time windows: A discrete particle swarm optimization approach, IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 42, no. 2, pp. 254–267, 2012.
[9]
Y. Marinakis, M. Marinaki, and A. Migdalas, A multi-adaptive particle swarm optimization for the vehicle routing problem with time windows, Inf. Sci., vol. 481, pp. 311–329, 2019.
[10]
Y. Zhang, J. Wang, and Z. Zhang, Edge-based formulation with graph attention network for practical vehicle routing problem with time windows, in Proc. 2022 Int. Joint Conf. Neural Networks (IJCNN), Padua, Italy, 2022, pp. 1–8.
[11]
Y. Qi, Z. Hou, H. Li, J. Huang, and X. Li, A decomposition based memetic algorithm for multi-objective vehicle routing problem with time windows, Comput. Oper. Res., vol. 62, pp. 61–77, 2015.
[12]
B. Moradi, The new optimization algorithm for the vehicle routing problem with time windows using multi-objective discrete learnable evolution model, Soft Comput., vol. 24, no. 9, pp. 6741–6769, 2020.
[13]
J. Castro-Gutierrez, D. Landa-Silva, and J. Moreno Pérez, Nature of real-world multi-objective vehicle routing with evolutionary algorithms, in Proc. 2011 IEEE Int. Conf. Systems, Man, and Cybernetics, Anchorage, AK, USA, 2011, pp. 257–264.
[14]
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002.
[15]
Y. Zhou and J. Wang, A local search-based multiobjective optimization algorithm for multiobjective vehicle routing problem with time windows, IEEE Syst. J., vol. 9, no. 3, pp. 1100–1113, 2015.
[16]
Y. Cai, M. Cheng, Y. Zhou, P. Liu, and J. M. Guo, A hybrid evolutionary multitask algorithm for the multiobjective vehicle routing problem with time windows, Inf. Sci., vol. 612, pp. 168–187, 2022.
[17]
B. Li, J. Li, K. Tang, and X. Yao, Many-objective evolutionary algorithms: A survey, ACM Comput. Surv., vol. 48, no. 1, p. 13, 2015.
[18]
Y. Sun, G. G. Yen, and Z. Yi, IGD indicator-based evolutionary algorithm for many-objective optimization problems, IEEE Trans. Evol. Comput., vol. 23, no. 2, pp. 173–187, 2019.
[19]
K. C. Tan, L. Feng, and M. Jiang, Evolutionary transfer optimization-A new frontier in evolutionary computation research, IEEE Comput. Intell. Mag., vol. 16, no. 1, pp. 22–33, 2021.
[20]
A. Gupta, Y. S. Ong, and L. Feng, Insights on transfer optimization: Because experience is the best teacher, IEEE Trans. Emerg. Top. Comput. Intell., vol. 2, no. 1, pp. 51–64, 2018.
[21]
E. Osaba, J. Del Ser, and P. N. Suganthan, Evolutionary multitask optimization: Fundamental research questions, practices, and directions for the future, Swarm Evol. Comput., vol. 75, p. 101203, 2022.
[22]
L. Zhang, Y. Xie, J. Chen, L. Feng, C. Chen, and K. Liu, A study on multiform multi-objective evolutionary optimization, Memet. Comput., vol. 13, no. 3, pp. 307–318, 2021.
[23]
B. Da, A. Gupta, Y. S. Ong, and L. Feng, Evolutionary multitasking across single and multi-objective formulations for improved problem solving, in Proc. 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, Canada, 2016, pp. 1695–1701.
[24]
Z. Guo, H. Liu, Y.-S. Ong, X. Qu, Y. Zhang, and J. Zheng, Generative multiform Bayesian optimization, IEEE Trans. Cybern., vol. 53, no. 7, pp. 4347–4360, 2023.
[25]
Y. Wu, H. Ding, M. Gong, A. K. Qin, W. Ma, Q. Miao, and K. C. Tan, Evolutionary multiform optimization with two-stage bidirectional knowledge transfer strategy for point cloud registration, IEEE Trans. Evol. Comput., vol. PP, no. 99, p. 1, 2022.
[26]
R. Jiao, B. Xue, and M. Zhang, A multiform optimization framework for constrained multiobjective optimization, IEEE Trans. Cybern., vol. 53, no. 8, pp. 5165–5177, 2023.
[27]
M. M. Solomon, Algorithms for the vehicle routing and scheduling problems with time window constraints, Oper. Res., vol. 35, no. 2, pp. 254–265, 1987.
[28]
N. Saini and S. Saha, Multi-objective optimization techniques: A survey of the state-of-the-art and applications, Eur. Phys. J. Spec. Top., vol. 230, no. 10, pp. 2319–2335, 2021.
[29]
J. Bader and E. Zitzler, Hype: An algorithm for fast hypervolume-based many-objective optimization, Evol. Comput., vol. 19, no. 1, pp. 45–76, 2011.
[30]
M. Kim, T. Hiroyasu, M. Miki, and S. Watanabe, SPEA2+: Improving the performance of the strength Pareto evolutionary algorithm 2, in Parallel Problem Solving from Nature-PPSN VIII, X. Yao, E. K. Burke, and J. A. Lozano, eds. Berlin, Germany: Springer, 2004, pp. 742–751.
[31]
Q. Zhang and H. Li, MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., vol. 11, no. 6, pp. 712–731, 2007.
[32]
X. Ma, J. Yin, A. Zhu, X. Li, Y. Yu, L. Wang, Y. Qi, and Z. Zhu, Enhanced multifactorial evolutionary algorithm with meme helper-tasks, IEEE Trans. Cybern., vol. 52, no. 8, pp. 7837–7851, 2022.
[33]
D. Lim, Y. S. Ong, Y. Jin, and B. Sendhoff, Evolutionary optimization with dynamic fidelity computational models, in Advanced Intelligent Computing Theories and Applications, D. S. Huang, D. C. Wunsch, D. S. Levine, and K. H. Jo, eds. Berlin, Germany: Springer, 2008, pp. 235–242.
[34]
K. Qiao, K. Yu, B. Qu, J. Liang, H. Song, and C. Yue, An evolutionary multitasking optimization framework for constrained multiobjective optimization problems, IEEE Trans. Evol. Comput., vol. 26, no. 2, pp. 263–277, 2022.
[35]
I. M. Oliver, D. Smith, and J. R. Holland, Study of permutation crossover operators on the traveling salesman problem, in Proc. Second Int. Conf. on Genetic Algorithms and Their Application, Broadway Hillsdale, NJ, USA, 1987, pp. 224–230.
[36]
O. Bräysy and M. Gendreau, Vehicle routing problem with time windows, part I: Route construction and local search algorithms, Transp. Sci., vol. 39, no. 1, pp. 104–118, 2005.
[37]
Z. Zhou, X. Ma, Z. Liang, and Z. Zhu, Multi-objective multi-factorial memetic algorithm based on bone route and large neighborhood local search for VRPTW, in Proc. 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 2020, pp. 1–8.
[38]
K. Deb, M. Mohan, and S. Mishra, Evaluating the ε-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions, Evol. Comput., vol. 13, no. 4, pp. 501–525, 2005.
[39]
I. Das and J. E. Dennis, Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems, SIAM J. Optim., vol. 8, no. 3, pp. 631–657, 1998.
[40]
A. Gupta, Y. S. Ong, and L. Feng, Multifactorial evolution: Toward evolutionary multitasking, IEEE Trans. Evol. Comput., vol. 20, no. 3, pp. 343–357, 2016.
[41]
T. Back, D. B. Fogel, and Z. Michalewicz, Handbook of Evolutionary Computation. Boca Raton, FL, USA: CRC Press, 1997.
[42]
Y. Zhou, L. Kong, Y. Cai, Z. Wu, S. Liu, J. Hong, and K. Wu, A decomposition-based local search for large-scale many-objective vehicle routing problems with simultaneous delivery and pickup and time windows, IEEE Syst. J., vol. 14, no. 4, pp. 5253–5264, 2020.
[43]
J. Wang, T. Weng, and Q. Zhang, A two-stage multiobjective evolutionary algorithm for multiobjective multidepot vehicle routing problem with time windows, IEEE Trans. Cybern., vol. 49, no. 7, pp. 2467–2478, 2019.
[44]
C. A. C. Coello and M. Reyes Sierra, A study of the parallelization of a co-evolutionary multi-objective evolutionary algorithm, in Proc. Mexican International Conference on Artificial Intelligence, Monterrey, Mexico, 2004, pp. 688-697.
[45]
E. Zitzler and L. Thiele, Multiobjective optimization using evolutionary algorithms—A comparative case study, IEEE Trans. Evol. Comput., vol. 3, no. 4, pp. 257-271, 1999.
[46]
S. García, A. Fernández, J. Luengo, and F. Herrera, A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability, Soft Comput., vol. 13, no. 10, pp. 959–977, 2009.
[47]
J. Derrac, S. García, D. Molina, and F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm Evol. Comput., vol. 1, pp. 3–18, 2011.