Journal Home > Volume 29 , Issue 1

Alzheimer’s disease (AD) is an irreversible and neurodegenerative disease that slowly impairs memory and neurocognitive function, but the etiology of AD is still unclear. With the explosive growth of electronic health data, the application of artificial intelligence (AI) in the healthcare setting provides excellent potential for exploring etiology and personalized treatment approaches, and improving the disease’s diagnostic and prognostic outcome. This paper first briefly introduces AI technologies and applications in medicine, and then presents a comprehensive review of AI in AD. In simple, it includes etiology discovery based on genetic data, computer-aided diagnosis (CAD), computer-aided prognosis (CAP) of AD using multi-modality data (genetic, neuroimaging and linguistic data), and pharmacological or non-pharmacological approaches for treating AD. Later, some popular publicly available AD datasets are introduced, which are important for advancing AI technologies in AD analysis. Finally, core research challenges and future research directions are discussed.


menu
Abstract
Full text
Outline
About this article

The Application of Artificial Intelligence in Alzheimer’s Research

Show Author's information Qing Zhao1Hanrui Xu2Jianqiang Li1( )Faheem Akhtar Rajput3Liyan Qiao4( )
Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
School of Medicine, Tsinghua University, Beijing 100084, China
Department of Computer Science, Sukkur IBA University, Sukkur 65200, Pakistan
Department of Neurology, Tsinghua University Yuquan Hospital, Beijing 100040, China

Abstract

Alzheimer’s disease (AD) is an irreversible and neurodegenerative disease that slowly impairs memory and neurocognitive function, but the etiology of AD is still unclear. With the explosive growth of electronic health data, the application of artificial intelligence (AI) in the healthcare setting provides excellent potential for exploring etiology and personalized treatment approaches, and improving the disease’s diagnostic and prognostic outcome. This paper first briefly introduces AI technologies and applications in medicine, and then presents a comprehensive review of AI in AD. In simple, it includes etiology discovery based on genetic data, computer-aided diagnosis (CAD), computer-aided prognosis (CAP) of AD using multi-modality data (genetic, neuroimaging and linguistic data), and pharmacological or non-pharmacological approaches for treating AD. Later, some popular publicly available AD datasets are introduced, which are important for advancing AI technologies in AD analysis. Finally, core research challenges and future research directions are discussed.

Keywords: artificial intelligence, Alzheimer’s disease, treatment, computer-aided diagnosis, etiology discovery, computer-aided prognosis

References(149)

[1]
R. J. Castellani, R. K. Rolston, and M. A. Smith, Alzheimer disease, Dis. Mon., vol. 56, no. 9, pp. 484–546, 2010.
[2]
E. Braak, K. Griffing, K. Arai, J. Bohl, H. Bratzke, and H. Braak, Neuropathology of Alzheimer’s disease: What is new since Alzheimer? Eur. Arch. Psychiatry Clin. Neurosci., vol. 249, no. 3, pp. S14–S22, 1999.
[3]
G. Livingston, J. Huntley, A. Sommerlad, D. Ames, C. Ballard, S. Banerjee, C. Brayne, A. Burns, J. Cohen-Mansfield, C. Cooper, et al., Dementia prevention, intervention, and care: 2020 report of the lancet commission, Lancet, vol. 396, no. 10248, pp. 413–446, 2020.
[4]
L. E. Hebert, P. A. Scherr, L. A. Beckett, M. S. Albert, D. M. Pilgrim, M. J. Chown, H. H. Funkenstein, and D. A. Evans, Age-specific incidence of Alzheimer’s disease in a community population, JAMA, vol. 273, no. 17, pp. 1354–1359, 1995.
[5]
T. Wang, R. G. Qiu, and M. Yu, Predictive modeling of the progression of Alzheimer’s disease with recurrent neural networks, Sci. Rep., vol. 8, no. 1, p. 9161, 2018.
[6]
C. Davatzikos, S. M. Resnick, X. Wu, P. Parmpi, and C. M. Clark, Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI, NeuroImage, vol. 41, no. 4, pp. 1220–1227, 2008.
[7]
P. Scheltens, Early diagnosis of dementia: Neuroimaging, J. Neurol., vol. 246, no. 1, pp. 16–20, 1999.
[8]
L. K. McEvoy, C. Fennema-Notestine, J. C. Roddey, D. J. Hagler Jr, D. Holland, D. S. Karow, C. J. Pung, J. B. Brewer, A. M. Dale, and A. D. N. Initiative, Alzheimer disease: Quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment, Radiology, vol. 251, no. 1, pp. 195–205, 2009.
[9]
B. Shi, Y. Chen, P. Zhang, C. D. Smith, and J. Liu, Nonlinear feature transformation and deep fusion for Alzheimer’s Disease staging analysis, Pattern Recognit., vol. 63, pp. 487–498, 2017.
[10]
A. Nordberg, J. O. Rinne, A. Kadir, and B. Långström, The use of PET in Alzheimer disease, Nat. Rev. Neurol., vol. 6, no. 2, pp. 78–87, 2010.
[11]
J. R. Petrella, R. E. Coleman, and P. M. Doraiswamy, Neuroimaging and early diagnosis of alzheimer disease: A look to the future, Radiology, vol. 226, no. 2, pp. 315–336, 2003.
[12]
J. L. Plass, B. D. Homer, S. Pawar, C. Brenner, and A. P. MacNamara, The effect of adaptive difficulty adjustment on the effectiveness of a game to develop executive function skills for learners of different ages, Cogn. Dev., vol. 49, pp. 56–67, 2019.
[13]
A. Ng, W. W. Tam, M. W. Zhang, C. S. Ho, S. F. Husain, R. S. McIntyre, and R. C. Ho, IL-1β, IL-6, TNF-α and CRP in elderly patients with depression or Alzheimer’s disease: Systematic review and meta-analysis, Sci. Rep., vol. 8, no.1, p. 12050, 2018.
[14]
K. A. Frazer, S. S. Murray, N. J. Schork, and E. J. Topol, Human genetic variation and its contribution to complex traits, Nat. Rev. Genet., vol. 10, no. 4, pp. 241–251, 2009.
[15]
J. Ren, J. Li, H. Liu, and T. Qin, Task offloading strategy with emergency handling and blockchain security in SDN-empowered and fog-assisted healthcare IoT, Tsinghua Science and Technology, vol. 27, no. 4, pp. 760–776, 2021.
[16]
W. Zhu and N. Razavian, Graph neural network on electronic health records for predicting Alzheimer’s disease, arXiv preprint arXiv: 1912.03761, 2019.
[17]
J. Tie, X. Lei, and Y. Pan, Metabolite-disease association prediction algorithm combining DeepWalk and random forest, Tsinghua Science and Technology, vol. 27, no. 1, pp. 58–67, 2021.
[18]
P. Hamet and J. Tremblay, Artificial intelligence in medicine, Metabolism, vol. 69, pp. S36–S40, 2017.
[19]
M. De Marsico, A. Petrosino, and S. Ricciardi, Iris recognition through machine learning techniques: A survey, Pattern Recognit. Lett., vol. 82, pp. 106–115, 2016.
[20]
M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, Support vector machines, IEEE Intell. Syst. Their Appl., vol. 13, no. 4, pp. 18–28, 1998.
[21]
N. Friedman, D. Geiger, and M. Goldszmidt, Bayesian network classifiers, Mach. Learn., vol. 29, pp. 131–163, 1997.
[22]
A. K. Jain, J. Mao, and K. M. Mohiuddin, Artificial neural networks: a tutorial, Computer, vol. 29, no. 3, pp. 31–44, 1996.
[23]
J. E. Van Engelen and H. H. Hoos, A survey on semi-supervised learning techniques, Mach. Learn., vol. 109, no. 2, pp. 373–440, 2020.
[24]
R. Xu and D. Wunsch, Survey of clustering algorithms, IEEE Trans. Neural Netw., vol. 16, no. 3, pp. 645–678, 2005.
[25]
T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu, An efficient k-means clustering algorithm: Analysis and implementation, IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 881–892, 2002.
[26]
B. Mahesh, Machine learning algorithms-a review, Int. J. Sci. Res., vol. 9, pp. 381–386, 2020.
[27]
Y. Mintz and R. Brodie, Introduction to artificial intelligence in medicine, Minim. Invasive Ther. Allied Technol., vol. 28, no. 2, pp. 73–81, 2019.
[28]
I. Kononenko, I. Bratko, M. Kukar, Application of machine learning to medical diagnosis, Mach. Learn. Data Min., vol. 389, p. 408, 1997.
[29]
Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol. 521, no. 7553, pp. 436–444, 2015.
[30]
T. Lee and H. Lee, Prediction of Alzheimer’s disease using blood gene expression data, Sci. Rep., vol. 10, no. 1, pp. 1–13, 2020.
[31]
N. Noorbakhsh-Sabet, R. Zand, Y. Zhang, and V. Abedi, Artificial intelligence transforms the future of health care, Am. J. Med., vol. 132, no. 7, pp. 795–801, 2019.
[32]
N. Schwalbe and B. Wahl, Artificial intelligence and the future of global health, Lancet, vol. 395, no. 10236, pp. 1579–1586, 2020.
[33]
G. Yu, Z. Chen, J. Wu, and Y. Tan, A diagnostic prediction framework on auxiliary medical system for breast cancer in developing countries, Knowl. Based Syst., vol. 232, p. 107459, 2021.
[34]
X. Xu, J. Li, Y. Guan, L. Zhao, Q. Zhao, L. Zhang, and L. Li, GLA-Net: A global-local attention network for automatic cataract classification, J. Biomed. Inform., vol. 124, p. 103939, 2021.
[35]
C. Zheng, X. Deng, Q. Fu, Q. F. Zhou, J. Feng, H. Ma, W. Liu, and X. Wang, Deep learning-based detection for COVID-19 from chest CT using weak label, MedRxiv, 2020.
[36]
B. A. Fritz, Z. Cui, M. Zhang, Y. He, Y. Chen, A. Kronzer, A. Ben Abdallah, C. R. King, M. S. Avidan, Deep-learning model for predicting 30-day postoperative mortality, Br. J Anaesth., vol. 123, no. 5, pp. 688-695, 2019.
[37]
M. Golovanevsky, C. Eickhoff, R. Singh, Multimodal Attention-based Deep Learning for Alzheimer’s Disease Diagnosis, arXiv preprint arXiv: 2206.08826, 2022.
[38]
Z. Breijyeh and R. Karaman, Comprehensive review on Alzheimer’s disease: Causes and treatment, Molecules, vol. 25, no. 24, p. 5789, 2020.
[39]
R. E. Tanzi, The genetics of alzheimer disease, Cold Spring Harb. Perspect. Med., vol. 2, no. 10, p. a006296, 2012.
[40]
C. L. Lendon, Exploring the etiology of Alzheimer disease using molecular genetics, JAMA, vol. 277, no. 10, pp. 825–831, 1997.
[41]
K. Ng, A. Sia, M. Ng, C. Tan, H. Chan, C. Tan, I. Rawtaer, L. Feng, R. Mahendran, A. Larbi, et al., Effects of horticultural therapy on Asian older adults: A randomized controlled trial, Int. J Environ. Res. Public Health, vol. 15, no. 8, p. 1705, 2018.
[42]
M. Yegambaram, B. Manivannan, T. G. Beach, and R. U. Halden, Role of environmental contaminants in the etiology of Alzheimer’s disease: a review, Curr. Alzheimer Res., vol. 12, no. 2, pp. 116–146, 2015.
[43]
C. Ho, R. Ho, and A. Quek, Chronic manganese toxicity associated with voltage-gated potassium channel complex antibodies in a relapsing neuropsychiatric disorder, Int. J. Environ. Res. Public Health, vol. 15, no. 4, p. 783, 2018.
[44]
J. L. Podcasy and C. N. Epperson, Considering sex and gender in Alzheimer disease and other dementias, Dialogues Clin. Neurosci., vol. 18, no. 4, pp. 437–446, 2016.
[45]
B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, and R. Sayres, Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (TCAV), arXiv preprint arXiv: 1711.11279, 2017.
[46]
M. Gatz, C. A. Reynolds, L. Fratiglioni, B. Johansson, J. A. Mortimer, S. Berg, A. Fiske, and N. L. Pedersen, Role of genes and environments for explaining alzheimer disease, Arch. Gen. Psychiatry, vol. 63, no. 2, p. 168, 2006.
[47]
Y. Freudenberg-Hua, W. Li, and P. Davies, The role of genetics in advancing precision medicine for Alzheimer’s disease—a narrative review, Front. Med., vol. 5, p. 108, 2018.
[48]
C. Ballard, S. Gauthier, A. Corbett, C. Brayne, D. Aarsland, and E. Jones, Alzheimer’s disease, Lancet, vol. 377, no. 9770, pp. 1019–1031, 2011.
[49]
D. Goldgaber, M. I. Lerman, O. W. McBride, U. Saffiotti, and D. C. Gajdusek, Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease, Science, vol. 235, no. 4791, pp. 877–880, 1987.
[50]
Z. Xu, C. Wu, and W. Pan, Imaging-wide association study: Integrating imaging endophenotypes in GWAS, NeuroImage, vol. 159, pp. 159–169, 2017.
[51]
K. Lunnon, M. Sattlecker, S. J. Furney, G. Coppola, A. Simmons, P. Proitsi, M. K. Lupton, A. Lourdusamy, C. Johnston, H. Soininen, et al., A blood gene expression marker of early Alzheimer’s disease, J. Alzheimers Dis., vol. 33, no. 3, pp. 737–753, 2013.
[52]
L. K. Climer, M. Dobretsov, and V. Lupashin, Defects in the COG complex and COG-related trafficking regulators affect neuronal Golgi function, Front. Neurosci., vol. 9, p. 405, 2015.
[53]
G. Wang, D. F. Zhang, H. Y. Jiang, Y. Fan, L. Ma, Z. Shen, R. Bi, M. Xu, L. Tan, B. Shan, et al., Mutation and association analyses of dementia-causal genes in Han Chinese patients with early-onset and familial Alzheimer’s disease, J. Psychiatr. Res., vol. 113, pp. 141–147, 2019.
[54]
N. S. Soleimani Zakeri, S. Pashazadeh, and H. MotieGhader, Gene biomarker discovery at different stages of Alzheimer using gene co-expression network approach, Sci. Rep., vol. 10, no. 1, p. 12210, 2020.
[55]
A. D. Roses, The medical and economic roles of pipeline pharmacogenetics: Alzheimer’s disease as a model of efficacy and HLA-B*5701 as a model of safety, Neuropsychopharmacology, vol. 34, no. 1, pp. 6–17, 2009.
[56]
D. Middleton, H. Mawhinney, M. D. Curran, J. A. Edwardson, R. Perry, I. McKeith, C. Morris, P. G. Ince, and D. Neill, Frequency of HLA-A and B alleles in early and late-onset Alzheimer’s disease, Neurosci. Lett., vol. 262, no. 2, pp. 140–142, 1999.
[57]
L. Dayon, A. N. Galindo, J. Wojcik, O. Cominetti, J. Corthésy, A. Oikonomidi, H. Henry, M. Kussmann, E. Migliavacca, I. Severin, et al., Alzheimer disease pathology and the cerebrospinal fluid proteome, Alzheimers Res. Ther., vol. 10, no. 1, p. 66, 2018.
[58]
C. Van Cauwenberghe, C. Van Broeckhoven, and K. Sleegers, The genetic landscape of Alzheimer disease: Clinical implications and perspectives, Genet. Med., vol. 18, no. 5, pp. 421–430, 2016.
[59]
A. Sharma and P. Dey, A machine learning approach to unmask novel gene signatures and prediction of Alzheimer’s disease within different brain regions, Genomics, vol. 113, no. 4, pp. 1778–1789, 2021.
[60]
L. Wang and Z. P. Liu, Detecting diagnostic biomarkers of Alzheimer’s disease by integrating gene expression data in six brain regions, Front. Genet., vol. 10, p. 157, 2019.
[61]
H. Chen, Y. He, J. Ji, and Y. Shi, A machine learning method for identifying critical interactions between gene pairs in Alzheimer’s disease prediction, Front. Neurol., vol. 10, p. 1162, 2019.
[62]
X. Huang, H. Liu, X. Li, L. Guan, J. Li, L. C. A. M. Tellier, H. Yang, J. Wang, and J. Zhang, Revealing Alzheimer’s disease genes spectrum in the whole-genome by machine learning, BMC Neurol., vol. 18, no. 1, pp. 1–8, 2018.
[63]
J. Kim and I. Ahn, Infectious disease outbreak prediction using media articles with machine learning models, Sci. Rep., vol. 11, no. 1, pp. 1–13, 2021.
[64]
Y. Zheng, B. Vanderbeek, E. Daniel, D. Stambolian, M. Maguire, D. Brainard, and J. Gee, An automated drusen detection system for classifying age-related macular degeneration with color fundus photographs, in Proc. 2013 IEEE 10th Int. Symp. on Biomedical Imaging, San Francisco, CA, USA, 2013, pp. 1448–1451.
[65]
R. A. Sperling, P. S. Aisen, L. A. Beckett, D. A. Bennett, S. Craft, A. M. Fagan, T. Iwatsubo, C. R. Jack Jr, J. Kaye, T. J. Montine, et al., Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease, Alzheimers Dement., vol. 7, no. 3, pp. 280–292, 2011.
[66]
M. C. Carrillo, R. A. Dean, F. Nicolas, D. S. Miller, R. Berman, Z. Khachaturian, L. J. Bain, R. Schindler, and D. Knopman, Revisiting the framework of the National Institute on Aging-Alzheimer’s Association diagnostic criteria, Alzheimers Dement., vol. 9, no. 5, pp. 594–601, 2013.
[67]
P. J. Visser, S. Vos, I. Rossum, and P. Scheltens, Comparison of International Working Group criteria and National Institute on Aging–Alzheimer’s Association criteria for Alzheimer’sdisease, Alzheimers Dement., vol. 8, no. 6, pp. 560–563, 2012.
[68]
E. E. Tripoliti, D. I. Fotiadis, M. Argyropoulou, and G. Manis, A six stage approach for the diagnosis of the Alzheimer’s disease based on fMRI data, J. Biomed. Inform., vol. 43, no. 2, pp. 307–320, 2010.
[69]
W. Wu, J. Venugopalan, and M. D. Wang, 11C-PIB PET image analysis for Alzheimer’s diagnosis using weighted voting ensembles, in Proc. 2017 39th Annual Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Repubic of Korea, 2017, pp. 3914–3917.
[70]
C. Tian, J. Ma, C. Zhang, and P. Zhan, A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network, Energies, vol. 11, no. 12, p. 3493, 2018.
[71]
F. Er and D. Goularas, Predicting the prognosis of MCI patients using longitudinal MRI data, IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 18, no. 3, pp. 1164–1173, 2021.
[72]
B. Y. Lei, M. Y. Yang, P. Yang, F. Zhou, W. Hou, W. B. Zou, X. Li, T. F. Wang, X. H. Xiao and S. Q. Wang, Diagnosis of Alzheimer’s disease via an attention-based multi-scale convolutional neural network, Knowl. Based Syst., vol. 238, p. 107942, 2022.
[73]
X. Hong, R. Lin, C. Yang, N. Zeng, C. Cai, J. Gou, and J. Yang, Predicting Alzheimer’s disease using LSTM, IEEE Access, vol. 7, pp. 80893–80901, 2019.
[74]
H. Cho, J. Y. Choi, M. S. Hwang, Y. J. Kim, H. M. Lee, H. S. Lee, J. H. Lee, Y. H. Ryu, M. S. Lee, and C. H. Lyoo, In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum, Ann. Neurol., vol. 80, no. 2, pp. 247–258, 2016.
[75]
M. Schöll, S. Lockhart, D. Schonhaut, J. O’Neil, M. Janabi, R. Ossenkoppele, S. Baker, J. Vogel, J. Faria, H., Schwimmer, et al., PET imaging of tau deposition in the aging human brain, Neuron, vol. 89, no. 5, pp. 971–982, 2016.
[76]
T. Jo, K. Nho, S. L. Risacher, and A. J. Saykin, Deep learning detection of informative features in tau PET for Alzheimer’s disease classification, BMC Bioinformatics, vol. 21, p. 496, 2020.
[77]
N. An, H. Ding, J. Yang, R. Au, and T. F. A. Ang, Deep ensemble learning for Alzheimer’s disease classification, J. Biomed. Inform., vol. 105, p. 103411, 2020.
[78]
B. Lei, M. Yang, P. Yang, F. Zhou, W. Hou, W. Zou, X. Li, T. Wang, X. Xiao, and S. Wang, Deep and joint learning of longitudinal data for Alzheimer’s disease prediction, Pattern Recognit., vol. 102, p. 107247, 2020.
[79]
H. Alkenani Ahmed, Y. Li, Y. Xu, and Q. Zhang, Predicting Alzheimer’s disease from spoken and written language using fusion-based stacked generalization, J. Biomed. Inform., vol. 118, no., pp. 103803–103803, 2021.
[80]
S. O. Orimaye, J. S. M. Wong, and C. P. Wong, Deep language space neural network for classifying mild cognitive impairment and Alzheimer-type dementia, PLoS One, vol. 13, no. 11, p. e0205636, 2018.
[81]
K. C. Fraser, K. Lundholm Fors, and D. Kokkinakis, Multilingual word embeddings for the assessment of narrative speech in mild cognitive impairment, Comput. Speech Lang., vol. 53, pp. 121–139, 2019.
[82]
K. C. Fraser, J. A. Meltzer, and F. Rudzicz, Linguistic features identify Alzheimer’s disease in narrative speech, J. Alzheimers Dis., vol. 49, no. 2, pp. 407–422, Nov. 2015.
[83]
S. Luz, F. Haider, S. de la Fuente Garcia, D. Fromm, and B. MacWhinney, Editorial: Alzheimer’s dementia recognition through spontaneous speech, Front. Comput. Sci., vol. 3, p. 780169, 2021.
[84]
E. Edwards, C. Dognin, B. Bollepalli, and M. Singh, Multiscale system for Alzheimer’s dementia recognition through spontaneous speech, in Proc. Interspeech 2020, pp. 2197–2201, 2020.
[85]
R. Sadeghian, J. D. Schaffer, and S. A. Zahorian, Speech processing approach for diagnosing dementia in an early stage, in Proc. Interspeech 2017, pp. 2705–2709, 2017.
[86]
R. Alireza, A. Hamid, and S. B. Mahdieh, Transformer-based deep neural network language models for Alzheimer’s disease risk assessment from targeted speech, BMC Med. Inform. Decis. Mak., vol. 21, no. 1, p. 92, 2021.
[87]
K. L. Fors, K. C. Fraser, and D. Kokkinakis, Automated syntactic analysis of language abilities in persons with mild and subjective cognitive impairment, Stud. Health Technol. Inform., vol. 247, pp. 705–709, 2018.
[88]
S. Mirzaei, M. El Yacoubi, S. Garcia-Salicetti, J. Boudy, C. Kahindo, V. Cristancho-Lacroix, H. Kerhervé, and A.S. Rigaud, Two-stage feature selection of voice parameters for early Alzheimer’s disease prediction, IRBM, vol. 39, no. 6, pp. 430–435, 2018.
[89]
J. Tröger, N. Linz, A. König, P. Robert, and J. Alexandersson, Telephone-based dementia screening I: automated semantic verbal fluency assessment, in Proc. 12th EAI Int. Conf. Pervasive Computing Technologies for Healthcare, New York, NY, USA, 2018, pp. 59–66.
[90]
E. Gonzalez-Moreira, D. Torres-Boza, H. A. Kairuz, C. Ferrer, M. Garcia-Zamora, F. Espinoza-Cuadros, and L. A. Hernandez-Gómez, Automatic prosodic analysis to identify mild dementia, Biomed Res. Int., vol. 2015, pp. 1–6, 2015.
[91]
J. J. G. Meilán, F. Martínez-Sánchez, J. Carro, D. E. López, L. Millian-Morell, and J. M. Arana, Speech in Alzheimer’s disease: Can temporal and acoustic parameters discriminate dementia? Dement Geriatr Cogn. Disord, vol. 37, nos. 5&6, pp. 327–334, 2014.
[92]
S. de la Fuente Garcia, C. W. Ritchie, and S. Luz, Artificial intelligence, speech, and language processing approaches to monitoring Alzheimer’s disease: A systematic review, J. Alzheimers Dis., vol. 78, no. 4, pp. 1547–1574, 2020.
[93]
F. Eyben, M. Wöllmer, and B. Schuller, Opensmile: The munich versatile and fast open-source audio feature extractor, in Proc. 18th ACM Int. Conf. Multimedia, Association for Computing Machinery, New York, NY, USA, 2010, pp. 1459–1462.
[94]
F. Eyben, F. Weninger, F. Gross, and B. Schuller, Recent developments in openSMILE, the Munich open-source multimedia feature extractor, in Proc. 21st ACM Int. Conf. Multimedia, Barcelona, Spain, 2013, pp. 835–838.
[95]
F. Eyben, K. R. Scherer, B. W. Schuller, J. Sundberg, E. Andre, C. Busso, L. Y. Devillers, J. Epps, P. Laukka, S. S. Narayanan, et al., The Geneva minimalistic acoustic parameter set (GeMAPS) for voice research and affective computing, IEEE Trans. Affective Comput., vol. 7, no. 2, pp. 190–202, 2016.
[96]
J. Chen, Y. Wang, and D. Wang, A feature study for classification-based speech separation at low signal-to-noise ratios, IEEE/ACM Trans. Audio Speech Lang. Process., vol. 22, no. 12, pp. 1993–2002, 2014.
[97]
J. Li, J. Yu, Z. Ye, S. Wong, M. Mak, B. Mak, X. Liu, and H. Meng, A comparative study of acoustic and linguistic features classification for Alzheimer’s disease detection, in Proc. ICASSP 2021-2021 IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021, pp. 6423–6427.
[98]
P. Mahajan and V. Baths, Acoustic and language based deep learning approaches for Alzheimer’s dementia detection from spontaneous speech, Front. Aging Neurosci., vol. 13, p. 623607, 2021.
[99]
A. Balagopalan, B. Eyre, F. Rudzicz, and J. Novikova, To BERT or not to BERT: Comparing speech and language-based approaches for Alzheimer’s disease detection, arXiv preprint arXiv: 2008.01551, 2020.
[100]
W. Wei, S. Visweswaran, and G. F. Cooper, The application of naive Bayes model averaging to predict Alzheimer’s disease from genome-wide data, J. Am. Med. Inform. Assoc., vol. 18, no. 4, pp. 370–375, 2011.
[101]
L. Xu, G. Liang, C. Liao, G. D. Chen, and C. C. Chang, An efficient classifier for Alzheimer’s disease genes identification, Molecules, vol. 23, no. 12, p. 3140, 2018.
[102]
D. V. O. Javier, E. Vallejo Edgar, E. Karol, T. P. J. Gerardo, and D. N. I. T. Alzheimer’s, Benchmarking machine learning models for late-onset Alzheimer’s disease prediction from genomic data, BMC Bioinform., vol. 20, no. 1, p. 709, 2019.
[103]
C. Park, J. Ha, and S. Park, Prediction of Alzheimer’s disease based on deep neural network by integrating gene expression and DNA methylation dataset, Expert Syst. Appl., vol. 140, p. 112873, 2020.
[104]
D. Zhang, Y. Wang, L. Zhou, H. Yuan, and D. Shen, Multimodal classification of Alzheimer’s disease and mild cognitive impairment, NeuroImage, vol. 55, no. 3, pp. 856–867, 2011.
[105]
C. J. Lynch and C. Liston, New machine-learning technologies for computer-aided diagnosis, Nat. Med., vol. 24, no. 9, pp. 1304–1305, 2018.
[106]
A. R. Mohammadi-Nejad, G. A. Hossein-Zadeh, and H. Soltanian-Zadeh, Structured and sparse canonical correlation analysis as a brain-wide multi-modal data fusion approach, IEEE Trans. Med. Imaging, vol. 36, no. 7, pp. 1438–1448, 2017.
[107]
S. Qiu, M. I. Miller, P. S. Joshi, J. C. Lee, C. Xue, Y. Ni, Y. Wang, I. De Anda-Duran, P. H. Hwang, J. A. Cramer, et al., Multimodal deep learning for Alzheimer’s disease dementia assessment, Nat. Commun., vol. 13, no.13, pp. 1–17, 2022.
[108]
W. Lin, Q. Gao, M. Du, W. Chen, and T. Tong, Multiclass diagnosis of stages of Alzheimer’s disease using linear discriminant analysis scoring for multimodal data, Comput. Biol. Med., vol. 134, p. 104478, 2021.
[109]
D. Chen, L. Zhang, and C. Ma, A multimodal diagnosis predictive model of Alzheimer’s disease with few-shot learning, in Proc. 2020 Int. Conf. Public Health and Data Science (ICPHDS), Guangzhou, China, 2021, pp. 273–277.
[110]
A. Spooner, G. Mohammadi, P. S. Sachdev, H. Brodaty, and A. Sowmya, Ensemble feature selection with data-driven thresholding for Alzheimer’s disease biomarker discovery, arXiv preprint arXiv: 2207.01822, 2022.
[111]
M. Kate, A. Redolfi, E. Peira, I. Bos, S. J. Vos, R. Vandenberghe, S. Gabel, J. Schaeverbeke, P. Scheltens, O. Blin, et al., MRI predictors of amyloid pathology: Results from the EMIF-AD Multimodal Biomarker Discovery study, Alzheimers Res. Ther., vol. 10, no. 1, pp. 1–12, 2018.
[112]
L. C. Jiskoot, J. L. Panman, L. H. Meeter, E. G. P. Dopper, L. Donker Kaat, S. Franzen, E. L. van der Ende, R. van Minkelen, S. A. R. B. Rombouts, J. M. Papma, et al., Longitudinal multimodal MRI as prognostic and diagnostic biomarker in presymptomatic familial frontotemporal dementia, Brain, vol. 142, no. 1, pp. 193–208, 2019.
[113]
K. Ritter, C. Lange, M. Weygandt, A. Mäurer, A. Roberts, M. Estrella, P. Suppa, L. Spies, V. Prasad, I. Steffen, et al., Combination of structural MRI andFDG-PET of the brain improves diagnostic accuracy in newly manifested cognitive impairment in geriatric inpatients, J. Alzheimers Dis., vol. 54, no. 4, pp. 1319–1331, 2016.
[114]
D. Zhang, Y. Wang, L. Zhou, H. Yuan, and D. Shen, Multimodal classification of Alzheimer’s disease and mild cognitive impairment, NeuroImage, vol. 55, no. 3, pp. 856–867, 2011.
[115]
B. Cheng, M. Liu, D. Zhang, B. C. Munsell, and D. Shen, Domain transfer learning for MCI conversion prediction, IEEE Trans. Biomed Eng., vol. 62, no. 7, pp. 1805–1817, 2015.
[116]
S. Yuan, H. Li, J. Wu, and X. Sun, Classification of mild cognitive impairment with multimodal data using both labeled and unlabeled samples, IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 18, no. 6, pp. 2281–2290, 2021.
[117]
W. Lin, T. Tong, Q. Gao, D. Guo, X. Du, Y. Yang, G. Guo, M. Xiao, M. Du, and X. Qu, Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment, Front. Neurosci., vol. 12, p. 777, 2018.
[118]
S. Tabarestani, M. Aghili, M. Shojaie, C. Freytes, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, et al., Longitudinal prediction modeling of alzheimer disease using recurrent neural networks, in Proc. 2019 IEEE EMBS Int. Conf. Biomedical & Health Informatics (BHI), Chicago, IL, USA, 2019, pp. 1–4.
[119]
I. Beheshti, H. Demirel, and H. Matsuda, Classification of Alzheimer’s disease and prediction of mild cognitive impairment-to-Alzheimer’s conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm, Comput. Biol. Med., vol. 83, pp. 109–119, 2017.
[120]
S. Zheng, Z. Zhu, Z. Liu, Z. Guo, Y. Liu, Y. Yang, and Y. Zhao, Multi-modal graph learning for disease prediction, IEEE Trans. Med. Imaging, vol. 41, no. 9, pp. 2207–2216, 2022.
[121]
G. Yubraj, L. R. Kumar, and K. Goo-Rak, Prediction and classification of Alzheimer’s disease based on combined features from apolipoprotein-E genotype, cerebrospinal fluid, MR, and FDG-PET imaging biomarkers, Front. Comput. Neurosci., vol. 13, p. 72, 2019.
[122]
U. Richarz, M. Gaudig, K. Rettig, and B. Schauble, Galantamine treatment in outpatients with mild Alzheimer’s disease, Acta Neurol. Scand., vol. 129, no. 6, pp. 382–392, 2014.
[123]
L. S. Schneider, K. S. Dagerman, J. P. Higgins, and R. McShane, Lack of evidence for the efficacy of memantine in mild Alzheimer disease, Arch. Neurol., vol. 68, no. 8, pp. 991–998, 2011.
[124]
J. Fang, Y. Li, R. Liu, X. Pang, C. Li, R. Yang, Y. He, W. Lian, A. L. Liu, and G. H. Du, Discovery of multitarget-directed ligands against Alzheimer’s disease through systematic prediction of chemical–protein interactions, J.Chem. Inf. Model., vol. 55, no. 1, pp. 149–164, 2015.
[125]
Y. Hara, N. McKeehan, and H. M. Fillit, Translating the biology of aging into novel therapeutics for Alzheimer disease, Neurology, vol. 92, no. 2, pp. 84–93, 2019.
[126]
S. Rodriguez, C. Hug, P. Todorov, N. Moret, S. A. Boswell, K. Evans, G. Zhou, N. T. Johnson, B. T. Hyman, P. K. Sorger, et al., Machine learning identifies candidates for drug repurposing in Alzheimer’s disease, Nat. Commun., vol. 12, no.1, pp.1–13, 2021.
[127]
S. Jamal, S. Goyal, A. Shanker, and A. Grover, Predicting neurological Adverse Drug Reactions based on biological, chemical and phenotypic properties of drugs using machine learning models, Sci. Rep., vol. 7, no.1, pp.1–12, 2017.
[128]
G. N. Souza, D. F. Deus, V. Tadaiesky, I. M. Araújo, D. C. Monteiro, and Á. L. Santana, Optimizing tasks generation for children in the early stages of literacy teaching: a study using bio-inspired metaheuristics, Soft Comput., vol. 22, no. 20, pp. 6811–6824, 2018.
[129]
M. Hendrix, T. Bellamy-Wood, S. McKay, V. Bloom, and I. Dunwell, Implementing adaptive game difficulty balancing in serious games, IEEE Trans. Games, vol. 11, no. 4, pp. 320–327, 2019.
[130]
X. Wang, Y. Zhou, and C. Zhao, Heart-rate analysis of healthy and insomnia groups with detrended fractal dimension feature in edge, Tsinghua Science and Technology, vol. 27, no. 2, pp. 325–332, 2021.
[131]
A. Dey, A. Chatburn, and M. Billinghurst, Exploration of an EEG-based cognitively adaptive training system in virtual reality, in Proc. 2019 IEEE Conf. Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 2019, pp. 220–226.
[132]
B. Sun, R. Al-Bayaty, Q. Huang, and D. Wu, Game theoretical approach for non-overlapping community detection, Tsinghua Science and Technology, vol. 26, no. 5, pp. 706–723, 2021.
[133]
T. Zhou, W. Liu, N. Li, X. Yang, Y. Han, and S. Zheng, Secure scheme for locating disease-causing genes based on multi-key homomorphic encryption, Tsinghua Science and Technology, vol. 27, no. 2, pp. 333–343, 2021.
[134]
S. G. Mueller, M. W. Weiner, L. J. Thal, R. C. Petersen, C. Jack, W. Jagust, J. Q. Trojanowski, A. W. Toga, and L. Beckett, The Alzheimer’s disease neuroimaging initiative, Neuroimaging Clin. N. Am., vol. 15, no. 4, pp. 869–877, 2005.
[135]
ADNI database, https://adni.loni.usc.edu/, 2017.
[136]
D. L. Beekly, E. M. Ramos, G. van Belle, W. Deitrich, A. D. Clark, M. E. Jacka, and W. A. Kukull, The National Alzheimer’s Coordinating Center (NACC) Database: An Alzheimer disease database, Alz. Dis. Assoc. Dis., vol.18, no. 4, pp. 270–277, 2004.
[137]
NACC database, https://naccdata.org/, 2023.
[138]
D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C. Morris, and R. L. Buckner, Open access series of imaging studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults, J. Cogn. Neurosci., vol. 19, no. 9, pp. 1498–1507, 2007.
[139]
OASIS database, https://www.oasis-brains.org/, 2023.
[140]
N. Allen, C. Sudlow, P. Downey, T. Peakman, J. Danesh, P. Elliott, J. Gallacher, J. Green, P. Matthews, J. Pell, et al., UK Biobank: Current status and what it means for epidemiology, Health Policy Technol., vol. 1, no. 3, pp. 123–126, 2012.
[141]
UK Biobank database, https://www.ukbiobank.ac.uk/, 2023.
[142]
C. Sudlow, J. Gallacher, N. Allen, V. Beral, P. Burton, J. Danesh, P. Downey, P. Elliott, J. Green, M. Landray, et al., UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age, PLoS Med., vol. 12, no. 3, p. e1001779, 2015.
[143]
T. Wilkinson, C. Schnier, K. Bush, K. Rannikmäe, D. E. Henshall, C. Lerpiniere, N. E. Allen, R. Flaig, T. C. Russ, D. Bathgate, et al., Identifying dementia outcomes in UK Biobank: A validation study of primary care, hospital admissions and mortality data, Eur. J.Epidemiol., vol. 34, no. 6, pp. 557–565, 2019.
[144]
L. S. Honig and R. Mayeux, Natural history of Alzheimer’s disease, Aging Clin. Exp. Res., vol. 13, no. 3, pp. 171–182, 2001.
[145]
B. MacWhinney, Understanding spoken language through TalkBank, Behav. Res. Methods, vol. 51, no. 4, pp. 1919–1927, 2019.
[146]
Pitt corpus database, https://dementia.talkbank.org/, 2017.
[147]
ADSP database, https://www.nia.nih.gov/, 2023.
[148]
J. J. Yang, J. Li, J. Mulder, Y. Wang, S. Chen, H. Wu, Q. Wang, and H. Pan, Emerging information technologies for enhanced healthcare, Comput. Ind., vol. 69, pp. 3–11, 2015.
[149]
C. F. Chen, O. Li, D. Tao, A. Barnett, C. Rudin, and J. K. Su, This looks like that: deep learning for interpretable image recognition, arXiv preprint arXiv:1806.10574, 2019.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 27 October 2022
Revised: 22 March 2023
Accepted: 27 April 2023
Published: 21 August 2023
Issue date: February 2024

Copyright

© The author(s) 2024.

Acknowledgements

This work was partially supported by the National Key R&D Program of China (No. 2020YFB2104402) and Beijing Postdoctoral Research Foundation (No. 2022ZZ075).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return