References(48)
[1]
S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. Wah, Time-series clustering–a decade review, Inf. Syst., vol. 53, pp. 16–38, 2015.
[2]
B. Yang, Y. Yang, Q. Li, D. Lin, Y. Li, J. Zheng, and Y. Cai, Classification of medical image notes for image labeling by using MinBERT, Tsinghua Science and Technology, vol. 28, no. 4, pp. 613–627, 2023.
[3]
M. Ahmed, R. Seraj, and S. M. S. Islam, The k-means algorithm: A comprehensive survey and performance evaluation, Electronics, vol. 9, no. 8, p. 1295, 2020.
[4]
E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN, ACM Trans. Database Syst., vol. 42, no. 3, p. 19, 2017.
[5]
P. Contreras and F. Murtagh, Hierarchical clustering, in Handbook of Cluster Analysis, C. Hennig, M. Meila, F. Murtagh, and R. Rocci, eds. New York, NY, USA: Chapman and Hall/CRC, 2015, pp. 124–145.
[6]
U. Maulik, S. Bandyopadhyay, and A. Mukhopadhyay, Multiobjective Genetic Algorithms for Clustering: Applications in Data Mining and Bioinformatics. Berlin, Germany: Springer, 2011.
[7]
F. Wang, X. Wang, and S. Sun, A reinforcement learning level-based particle swarm optimization algorithm for large-scale optimization, Inf. Sci., vol. 602, pp. 298–312, 2022.
[8]
K. Zhu, J. Li, and H. Baoyin, Trajectory optimization of the exploration of asteroids using swarm intelligent algorithms, Tsinghua Science and Technology, vol. 14, no. S2, pp. 7–11, 2009.
[9]
W. Li, G. Zhang, X. Yang, Z. Tao, and H. Xu, Sizing a hybrid renewable energy system by a coevolutionary multiobjective optimization algorithm, Complexity, vol. 2021, p. 8822765, 2021.
[10]
L. Li, L. Jiao, J. Zhao, R. Shang, and M. Gong, Quantum-behaved discrete multi-objective particle swarm optimization for complex network clustering, Pattern Recogn., vol. 63, pp. 1–14, 2017.
[11]
W. Li, R. Wang, T. Zhang, M. Ming, and K. Li, Reinvestigation of evolutionary many-objective optimization: Focus on the Pareto knee front, Inf. Sci., vol. 522, pp. 193–213, 2020.
[12]
U. Maulik and S. Bandyopadhyay, Genetic algorithm-based clustering technique, Pattern Recogn., vol. 33, no. 9, pp. 1455–1465, 2000.
[13]
W. Li, T. Zhang, R. Wang, B. Wang, Y. Song, and X. Li, A knee-point driven multi-objective evolutionary algorithm for flexible job shop scheduling, in Proc. 2019 IEEE Symp. Series on Computational Intelligence, Xiamen, China, 2019, pp. 1716–1722.
[14]
J. Handl and J. Knowles, Evolutionary multiobjective clustering, in Proc. 8th Int. Conf. on Parallel Problem Solving from Nature, Birmingham, UK, 2004, pp. 1081–1091.
[15]
E. Jiang, L. Wang, and J. Wang, Decomposition-based multi-objective optimization for energy-aware distributed hybrid flow shop scheduling with multiprocessor tasks, Tsinghua Science and Technology, vol. 26, no. 5, pp. 646–663, 2021.
[16]
O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Pérez, and I. Perona, An extensive comparative study of cluster validity indices, Pattern Recogn., vol. 46, no. 1, pp. 243–256, 2013.
[17]
J. Handl and J. Knowles, Multi-objective clustering and cluster validation, in Multi-Objective Machine Learning, Y. Jin, ed. Berlin, Germany: Springer, 2006, pp. 21–47.
[18]
R. Wang, S. Lai, G. Wu, L. Xing, L. Wang, and H. Ishibuchi, Multi-clustering via evolutionary multi-objective optimization, Inf. Sci., vol. 450, pp. 128–140, 2018.
[19]
W. Li, T. Zhang, R. Wang, S. Huang, and J. Liang, Multimodal multi-objective optimization: Comparative study of the state-of-the-art, Swarm Evol. Comput., vol. 77, p. 101253, 2023.
[20]
A. Gupta, Y. S. Ong, and L. Feng, Multifactorial evolution: Toward evolutionary multitasking, IEEE Trans. Evol. Comput., vol. 20, no. 3, pp. 343–357, 2016.
[21]
W. Li, R. Wang, T. Zhang, M. Ming, and H. Lei, Multi-scenario microgrid optimization using an evolutionary multi-objective algorithm, Swarm Evol. Comput., vol. 50, p. 100570, 2019.
[22]
Y. Liu, T. Özyer, R. Alhajj, and K. Barker, Integrating multi-objective genetic algorithm and validity analysis for locating and ranking alternative clustering, Informatica, vol. 29, no. 1, pp. 33–40, 2005.
[23]
M. Kim and R. S. Ramakrishna, New indices for cluster validity assessment, Pattern Recogn. Lett., vol. 26, no. 15, pp. 2353–2363, 2005.
[24]
G. Gan, C. Ma, and J. Wu, Data Clustering: Theory, Algorithms, and Applications, 2nd ed. Alexandria, VA, USA: SIAM, 2007.
[25]
H. Li, X. Wu, X. Wan, and W. Lin, Time series clustering via matrix profile and community detection, Adv. Eng. Inf., vol. 54, p. 101771, 2022.
[26]
A. Blázquez-García, A. Conde, U. Mori, and J. A. Lozano, A review on outlier/anomaly detection in time series data, ACM Comput. Surv., vol. 54, no. 3, p. 56, 2021.
[27]
S. Salvador and P. Chan, Toward accurate dynamic time warping in linear time and space, Intelligent Data Analysis, vol. 11, no. 5, pp. 561–580, 2007.
[28]
J. Hu, Y. Pan, T. Li, and Y. Yang, Tw-co-MFC: Two-level weighted collaborative fuzzy clustering based on maximum entropy for multi-view data, Tsinghua Science and Technology, vol. 26, no. 2, pp. 185–198, 2021.
[29]
R. A. Armstrong, Should Pearson’s correlation coefficient be avoided? Ophthalmic Physiol. Opt., vol. 39, no. 5, pp. 316–327, 2019.
[30]
Y. Zhang, Y. Li, J. Song, X. Chen, Y. Lu, and W. Wang, Pearson correlation coefficient of current derivatives based pilot protection scheme for long-distance LCC-HVDC transmission lines, Int. J. Electr. Power Energy Syst., vol. 116, p. 105526, 2020.
[31]
S. Liu, Q. Lin, L. Feng, K. C. Wong, and K. C. Tan, Evolutionary multitasking for large-scale multiobjective optimization, IEEE Trans. Evol. Comput., .
[32]
E. Osaba, J. Del Ser, A. D. Martinez, and A. Hussain, Evolutionary multitask optimization: A methodological overview, challenges, and future research directions, Cogn. Comput., vol. 14, no. 3, pp. 927–954, 2022.
[33]
K. K. Bali, Y. S. Ong, A. Gupta, and P. S. Tan, Multifactorial evolutionary algorithm with online transfer parameter estimation: MFEA-II, IEEE Trans. Evol. Comput., vol. 24, no. 1, pp. 69–83, 2020.
[34]
P. T. H. Hanh, P. D. Thanh, and H. T. T. Binh, Evolutionary algorithm and multifactorial evolutionary algorithm on clustered shortest-path tree problem, Inf. Sci., vol. 553, pp. 280–304, 2021.
[35]
A. Gupta, Y. S. Ong, L. Feng, and K. C. Tan, Multiobjective multifactorial optimization in evolutionary multitasking, IEEE Trans. Cybern., vol. 47, no. 7, pp. 1652–1665, 2017.
[36]
Y. S. Ong and A. Gupta, Evolutionary multitasking: A computer science view of cognitive multitasking, Cogn. Comput., vol. 8, no. 2, pp. 125–142, 2016.
[37]
Y. Yuan, Y. S. Ong, A. Gupta, P. S. Tan, and H. Xu, Evolutionary multitasking in permutation-based combinatorial optimization problems: Realization with TSP, QAP, LOP, and JSP, in Proc. 2016 IEEE Region 10 Conf., Singapore, 2016, pp. 3157–3164.
[38]
L. Zhou, L. Feng, J. Zhong, Y. S. Ong, Z. Zhu, and E. Sha, Evolutionary multitasking in combinatorial search spaces: A case study in capacitated vehicle routing problem, in Proc. 2016 IEEE Symp. Series on Computational Intelligence, Athens, Greece, 2016, pp. 1–8.
[39]
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002.
[40]
A. Mukhopadhyay, U. Maulik, and S. Bandyopadhyay, A survey of multiobjective evolutionary clustering, ACM Comput. Surv., vol. 47, no. 4, p. 61, 2015.
[41]
W. Gong, Z. Cai, and D. Liang, Adaptive ranking mutation operator based differential evolution for constrained optimization, IEEE Trans. Cybern., vol. 45, no. 4, pp. 716–727, 2015.
[42]
J. Zhang and L. Xing, An improved genetic algorithm for the integrated satellite imaging and data transmission scheduling problem, Comput. Oper. Res., vol. 139, p. 105626, 2022.
[43]
R. Lu, H. Shen, Z. Feng, H. Li, W. Zhao, and X. Li, HTDeT: A clustering method using information entropy for hardware Trojan detection, Tsinghua Science and Technology, vol. 26, no. 1, pp. 48–61, 2021.
[44]
X. Li and H. Liu, Greedy optimization for K-means-based consensus clustering, Tsinghua Science and Technology, vol. 23, no. 2, pp. 184–194, 2018.
[45]
X. Chang, D. Tao, and X. Chao, Multi-view self-paced learning for clustering, in Proc. 24th Int. Conf. on Artificial Intelligence, Buenos Aires, Argentina, 2015, pp. 3974–3980.
[46]
W. Li, T. Zhang, R. Wang, and H. Ishibuchi, Weighted indicator-based evolutionary algorithm for multimodal multiobjective optimization, IEEE Trans. Evol. Comput., vol. 25, no. 6, pp. 1064–1078, 2021.
[47]
W. Li, X. Yao, T. Zhang, R. Wang, and L. Wang, Hierarchy ranking method for multimodal multiobjective optimization with local Pareto fronts, IEEE Trans. Evol. Comput., vol. 27, no. 1, pp. 98–110, 2023.
[48]
X. Yao, W. Li, X. Pan, and R. Wang, Multimodal multi-objective evolutionary algorithm for multiple path planning, Comput. Ind. Eng., vol. 169, p. 108145, 2022.