Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Cyberattacks against highly integrated Internet of Things (IoT) servers, apps, and telecoms infrastructure are rapidly increasing when issues produced by IoT networks go unnoticed for an extended period. IoT interface attacks must be evaluated in real-time for effective safety and security measures. This study implements a smart intrusion detection system (IDS) designed for IoT threats, and interoperability with IoT connectivity standards is offered by the identity solution. An IDS is a common type of network security technology that has recently received increasing interest in the research community. The system has already piqued the curiosity of scientific and industrial communities to identify intrusions. Several IDSs based on machine learning (ML) and deep learning (DL) have been proposed. This study introduces IDS-SIoDL, a novel IDS for IoT-based smart cities that integrates long shortterm memory (LSTM) and feature engineering. This model is tested using tensor processing unit (TPU) on the enhanced BoT-IoT, Edge-IIoT, and NSL-KDD datasets. Compared with current IDSs, the obtained results provide good assessment features, such as accuracy, recall, and precision, with approximately 0.9990 recording time and calculating times of approximately 600 and 6 ms for training and classification, respectively.
M. M. Salim, S. Rathore, and J. H. Park, Distributed denial of service attacks and its defenses in IoT: A survey, J. Supercomput., vol. 76, no. 7, pp. 5320–5363, 2020.
L. Sai Ramesh, S. S. Sundar, K. Selvakumar, and S. Sabena, Tracking of wearable IoT devices through WAP using intelligent rule-based location aware approach, J. Inf. Knowl. Manag., vol. 20, p. 2140005, 2021.
K. Kimani, V. Oduol, and K. Langat, Cyber security challenges for IoT-based smart grid networks, Int. J. Crit. Infr. Prot., vol. 25, pp. 36–49, 2019.
G. B. Mohammad, S. Shitharth, and P. R. Kumar, Integrated machine learning model for an URL phishing detection, Int. J. Grid Distrib. Comput., vol. 14, no. 1, pp. 513–529, 2021.
N. Angelova, G. Kiryakova, and L. Yordanova, The great impact of Internet of Things on business, Trakia J. Sci., vol. 15, no. 1, pp. 406–412, 2017.
G. Thamilarasu and S. Chawla, Towards deep-learning-driven intrusion detection for the Internet of Things, Sensors, vol. 19, no. 9, p. 1977, 2019.
F. A. Alaba, M. Othman, I. A. T. Hashem, and F. Alotaibi, Internet of Things security: A survey, J. Netw. Comput. Appl., vol. 88, pp. 10–28, 2017.
P. M. Chanal and M. S. Kakkasageri, Security and privacy in IoT: A survey, Wirel. Pers. Commun., vol. 115, no. 2, pp. 1667–1693, 2020.
J. Gu, L. Wang, H. Wang, and S. Wang, A novel approach to intrusion detection using SVM ensemble with feature augmentation, Comput. Secur., vol. 86, pp. 53–62, 2019.
W. Zhou, J. Li, Y. Chen, and L. C. Shen, Strategic interaction multi-agent deep reinforcement learning, IEEE Access, vol. 8, pp. 119000–119009, 2020.
X. Yuan, J. Chen, N. Zhang, X. Fang, and D. Liu, A federated bidirectional connection broad learning scheme for secure data sharing in Internet of Vehicles, China Commun., vol. 18, no. 7, pp. 117–133, 2021.
A. Ashiquzzaman, H. Lee, T. W. Um, and J. Kim, Energy-efficient IoT sensor calibration with deep reinforcement learning, IEEE Access, vol. 8, pp. 97045–97055, 2020.
M. Ge, N. F. Syed, X. Fu, Z. Baig, and A. Robles-Kelly, Towards a deep learning-driven intrusion detection approach for Internet of Things, Comput. Netw., vol. 186, p. 107784, 2021.
I. Ullah and Q. H. Mahmoud, Design and development of a deep learning-based model for anomaly detection in IoT networks, IEEE Access, vol. 9, pp. 103906–103926, 2021.
A. Guezzaz, S. Benkirane, M. Azrour, and S. Khurram, A reliable network intrusion detection approach using decision tree with enhanced data quality, Secur. Commun. Netw., vol. 2021, pp. 1–8, 2021.
A. Guezzaz, A. Asimi, Y. Asimi, Z. Tbatou, and Y. Sadqi, A lightweight neural classifier for intrusion detection, Gen. Lett. Math., vol. 2, no. 2, pp. 57–66, 2017.
S. M. Kasongo, An advanced intrusion detection system for IIoT based on GA and tree based algorithms, IEEE Access, vol. 9, pp. 113199–113212, 2021.
T. Yigitcanlar, Smart cities in the making, Int. J. Knowl.-Based Develop., vol. 8, no. 3, pp. 201–205, 2017.
I. M. F. Oomens and B. M. Sadowski, The importance of internal alignment in smart city initiatives: An ecosystem approach, Telecommun. Policy, vol. 43, no. 6, pp. 485–500, 2019.
M. Lytras, A. Visvizi, and A. Sarirete, Clustering smart city services: Perceptions, expectations, responses, Sustainability, vol. 11, no. 6, p. 1669, 2019.
L. Nicholls, Y. Strengers, and J. Sadowski, Social impacts and control in the smart home, Nat. Energy, vol. 5, no. 3, pp. 180–182, 2020.
Z. Xu, Y. Gao, M. Hussain, and P. Cheng, Demand side management for smart grid based on smart home appliances with renewable energy sources and an energy storage system, Math. Probl. Eng., vol. 2020, pp. 1–20, 2020.
M. Li, H. Tang, A. R. Hussein, and X. Wang, A sidechain-based decentralized authentication scheme via optimized two-way peg protocol for smart community, IEEE Open J. Commun. Soc., vol. 1, pp. 282–292, 2020.
G. V. Pereira, P. Parycek, E. Falco, and R. Kleinhans, Smart governance in the context of smart cities: A literature review, Inf. Polity, vol. 23, no. 2, pp. 143–162, 2018.
H. Park and S. B. Rhee, IoT-based smart building environment service for occupants’ thermal comfort, J. Sensors, vol. 2018, pp. 1–10, 2018.
A. Kusiak, Smart manufacturing, Int. J. Prod. Res., vol. 56, nos. 1&2, pp. 508–517, 2018.
M. Taylor, Climate-smart agriculture: What is it good for? J. Peasant. Stud., vol. 45, no. 1, pp. 89–107, 2018.
C. Vorakulpipat, R. K. L. Ko, Q. Li, and A. Meddahi, Security and privacy in smart cities, Secur. Commun. Netw., vol. 2021, pp. 1–2, 2021.
A. Koubaa, A. Aldawood, B. Saeed, A. Hadid, M. Ahmed, A. Saad, H. Alkhouja, A. Ammar, and M. Alkanhal, Smart palm: An IoT framework for red palm weevil early detection, Agronomy, vol. 10, no. 7, p. 987, 2020.
M. J. O'Grady, D. Langton, and G. M. P. O'Hare, Edge computing: A tractable model for smart agriculture? AIIA, vol. 3, pp. 42–51, 2019.
K. Pardini, J. J. P. C. Rodrigues, S. A. Kozlov, N. Kumar, and V. Furtado, IoT-based solid waste management solutions: A survey, J. Sens. Actuator Netw., vol. 8, no. 1, p. 5, 2019.
F. Al-Turjman and A. Malekloo, Smart parking in IoT-enabled cities: A survey, Sustain. Cities Soc., vol. 49, p. 101608, 2019.
P. A. Keane and E. J. Topol, With an eye to AI and autonomous diagnosis, NPJ Digit. Med., vol. 1, p. 40, 2018.
G. Trencher and A. Karvonen, Stretching “smart”: Advancing health and well-being through the smart city agenda, Local Environ., vol. 24, no. 7, pp. 610–627, 2019.
J. Wan, J. Yang, Z. Wang, and Q. Hua, Artificial intelligence for cloud-assisted smart factory, IEEE Access, vol. 6, pp. 55419–55430, 2018.
W. Elmasry, A. Akbulut, and A. H. Zaim, Evolving deep learning architectures for network intrusion detection using a double PSO metaheuristic, Comput. Netw., vol. 168, p. 107042, 2020.
M. Ahmed, A. N. Mahmood, and J. Hu, A survey of network anomaly detection techniques, J. Netw. Comput. Appl., vol. 60, pp. 19–31, 2016.
I. Butun, S. D. Morgera, and R. Sankar, A survey of intrusion detection systems in wireless sensor networks, IEEE Commun. Surv. Tutor., vol. 16, no. 1, pp. 266–282, 2014.
M. F. Elrawy, A. I. Awad, and H. F. A. Hamed, Intrusion detection systems for IoT-based smart environments: a survey, J. Cloud Comput. Adv. Syst. Appl., vol. 7, no. 1, p. 123, 2018.
J. Ashraf, M. Keshk, N. Moustafa, M. Abdel-Basset, H. Khurshid, A. D. Bakhshi, and R. R. Mostafa, IoTBoT-IDS: A novel statistical learning-enabled botnet detection framework for protecting networks of smart cities, Sustain. Cities Soc., vol. 72, p. 103041, 2021.
M. M. Rashid, J. Kamruzzaman, M. Mehedi Hassan, T. Imam, S. Wibowo, S. Gordon, and G. Fortino, Adversarial training for deep learning-based cyberattack detection in IoT-based smart city applications, Comput. Secur., vol. 120, p. 102783, 2022.
T. Gaber, A. El-Ghamry, and A. E. Hassanien, Injection attack detection using machine learning for smart IoT applications, Phys. Commun., vol. 52, p. 101685, 2022.
S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.
N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset, Future Gener. Comput. Syst., vol. 100, pp. 779–796, 2019.
M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke, Edge-IIoTset: A new comprehensive realistic cyber security dataset of IoT and IIoT applications for centralized and federated learning, IEEE Access, vol. 10, pp. 40281–40306, 2022.
M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, Network traffic classifier with convolutional and recurrent neural networks for Internet of Things, IEEE Access, vol. 5, pp. 18042–18050, 2017.
A. A. Diro and N. Chilamkurti, Distributed attack detection scheme using deep learning approach for Internet of Things, Future Gener. Comput. Syst., vol. 82, pp. 761–768, 2018.
S. Pande, A. Khamparia, and D. Gupta, An intrusion detection system for health-care system using machine and deep learning, World J. Eng., vol. 19, no. 2, pp. 166–174, 2022.
Z. K. Maseer, R. Yusof, S. A. Mostafa, N. Bahaman, O. Musa, and B. A. S. Alrimy, DeepIoT.IDS: hybrid deep learning for enhancing IoT network intrusion detection, Comput. Mater. Continua, vol. 69, no. 3, pp. 3945–3966, 2021.
M. Douiba, S. Benkirane, A. Guezzaz, and M. Azrour, An improved anomaly detection model for IoT security using decision tree and gradient boosting, J. Supercomput., vol. 79, no. 3, pp. 3392–3411, 2023.
3506
Views
864
Downloads
5
Crossref
4
Web of Science
5
Scopus
0
CSCD
Altmetrics
The articles published in this open access journal are distributed under the terms of theCreative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).