References(21)
[1]
Z. Yuan, Y. Lu, and Y. Xue, DroidDetector: Android malware characterization and detection using deep learning, Tsinghua Science and Technology, vol. 21, no. 1, pp. 114–123, 2016.
[2]
Y. Sun, Z. Dou, Y. Li, and S. Wang, Improving semantic part features for person re-identification with supervised non-local similarity, Tsinghua Science and Technology, vol. 25, no. 5, pp. 636–646, 2020.
[3]
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. New York, NY, USA: Springer, 2009.
[4]
H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Statist., vol. 22, no. 3, pp. 400–407, 1951.
[5]
R. Johnson and T. Zhang, Accelerating stochastic gradient descent using predictive variance reduction, in Proc. 26th Int. Conf. Neural Information Processing Systems, Lake Tahoe, NV, USA, 2013, pp. 315–323.
[6]
A. Dedazio, F. Bach, and S. Lacoste-Julien, SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives, in Proc. 27th Int. Conf. Neural Information Processing Systems, Montreal, Canada, 2014, pp. 1646–1654.
[7]
O. Shamir and T. Zhang, Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes, in Proc. 30th Int. Conf. Machine Learning, Atlanta, GA, USA, 2013, pp. 71–79.
[8]
L. Xiao and T. Zhang, A proximal stochastic gradient method with progressive variance reduction, SIAM J. Optim., vol. 24, no. 4, pp. 2057–2075, 2014.
[9]
S. Shalev-Shwartz and T. Zhang, Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization, in Proc. 31st Int. Conf. Machine Learning, Beijing, China, 2014, pp. I-64–I-72.
[10]
A. Defazio, A simple practical accelerated method for finite sums, in Proc. 30th Int. Conf. Neural Information Processing Systems, Barcelona, Spain, 2016, pp. 676–684.
[11]
H. Lin, J. Mairal, and Z. Harchaoui, Catalyst acceleration for first-order convex optimization: From theory to practice, J. Mach. Learn. Res., vol. 18, no. 1, pp. 7854–7907, 2017.
[12]
Z. Allen-Zhu, Katyusha: The first direct acceleration of stochastic gradient methods, J. Mach. Learn. Res., vol. 18, no. 1, pp. 8194–8244, 2017.
[13]
K. Zhou, F. Shang, and J. Cheng, A simple stochastic variance reduced algorithm with fast convergence rates, in Proc. 35th Int. Conf. Machine Learning, Stockholm, Sweden, 2018, pp. 5980–5989.
[14]
Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course. New York, NY, USA: Springer, 2004.
[15]
A. Chambolle and C. H. Dossal, On the convergence of the iterates of “FISTA”, J. Optim. Theory Appl., vol. 166, no. 3, p. 25, 2015.
[16]
J. Liu, L. Xu, S. Shen, and Q. Ling, An accelerated variance reducing stochastic method with Douglas-Rachford splitting, Mach. Learn., vol. 108, no. 5, pp. 859–878, 2019.
[17]
P. Panagiotis, L. Stella, and A. Bemporad, Douglas-Rachford splitting: Complexity estimates and accelerated variants, in Proc. 53rd IEEE Conf. Decision and Control, Los Angeles, CA, USA, 2014, pp. 4234–4239.
[18]
C. Lemaréchal and C. Sagastizábal, Practical aspects of the Moreau–Yosida regularization: Theoretical preliminaries, SIAM J. Optim., vol. 7, no. 2, pp. 367–385, 1997.
[19]
T. Hofmann, A. Lucchi, S. Lacoste-Julien, and B. McWilliams, Variance reduced stochastic gradient descent with neighbors, in Proc. 28th Int. Conf. Neural Information Processing Systems, Montreal, Canada, 2015, pp. 2305–2313.
[20]
H. Luo, X. Bai, G. Lim, and J. Peng, New global algorithms for quadratic programming with a few negative eigenvalues based on alternative direction method and convex relaxation, Math. Prog. Comp., vol. 11, no. 1, pp. 119–171, 2019.
[21]
H. Luo, X. Ding, J. Peng, R. Jiang, and D. Li, Complexity results and effective algorithms for worst-case linear optimization under uncertainties, Informs J. Comput., vol. 33, no. 1, pp. 180–197, 2021.