AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Blockchain Data Analysis from the Perspective of Complex Networks: Overview

School of Information Science and Engineering, Shandong Normal University, Jinan 250307, China
School of Information Science and Engineering, Linyi University, Linyi 276005, China
Show Author Information

Abstract

Cryptocurrency based on blockchain technology has gradually become a choice for people to invest in, and several users have participated in the accumulation of massive transaction data. Complete transaction records in blockchains and the openness of data provide researchers with opportunities to mine and analyze data in blockchains. Network modeling and analysis of cryptocurrency transaction records are common methods in blockchain data analysis. The analysis of attribute graphs can provide insights into various economic indicators, illegal activities, and general Internet security, among others. Accordingly, this article aims to summarize and analyze the literature on cryptocurrency transaction data from the perspective of complex networks. To provide systematic guidance for researchers, we put forward a blockchain data analysis framework based on the introduction of the relevant background and reviewed the work from five aspects: blockchain data model, data acquisition on blockchains, existing analysis tools, available insights, and common analysis methods. For each aspect, we introduce the research problems, summarize the methods, and discuss the results and findings. Finally, we present future research points and several open questions in the study of cryptocurrency transaction networks.

References

[1]
L. Hughes, Y. K. Dwivedi, S. K. Misra, N. P. Rana, V. Raghavan, and V. Akella, Blockchain research, practice and policy: Applications, benefits, limitations, emerging research themes and research agenda, Int. J. Inf. Manage., vol. 49, pp. 114–129, 2019.
[2]
S. Nakamoto, Bitcoin: A peer-to-Peer Electronic Cash, https://bitcoin.org/bitcoin.pdf, 2008.
[3]
J. Wu, J. Liu, Y. Zhao, and Z. Zheng, Analysis of cryptocurrency transactions from a network perspective: An overview, J. Netw. Comput. Appl., vol. 190, p. 103139, 2021.
[4]
L. H. Zhu, F. Gao, M. Shen, Y. D. Li, B. K. Zheng, H. L. Mao, and Z. Wu, Survey on privacy preserving techniques for blockchain technology, (in Chinese), J. Comput. Res. Dev., vol. 54, no. 10, pp. 2170–2186, 2017.
[5]
S. Xu, X. Chen, and Y. He, EVchain: An anonymous blockchain-based system for charging-connected electric vehicles, Tsinghua Science and Technology, vol. 26, no. 6, pp. 845–856, 2021.
[6]
S. Saxena, B. Bhushan, and M. A. Ahad, Blockchain based solutions to secure IoT: Background, integration trends and a way forward, J. Netw. Comput. Appl., vol. 181, p. 103050, 2021.
[7]
F. J. de Haro-Olmo, Á. J. Varela-Vaca, and J. A. Álvarez-Bermejo, Blockchain from the perspective of privacy and anonymisation: A systematic literature review, Sensors, vol. 20, no. 24, p. 7171, 2020.
[8]
C. G. Akcora, M. F. Dixon, Y. R. Gel, and M. Kantarcioglu, Blockchain data analytics. J. IEEE Intell. Inf., vol. 20, no. 1, pp. 1–7, 2019.
[9]
W. L. Chen and Z. B. Zheng, Blockchain data analysis: A review of status, trends and challenges, (in Chinese), J. Comput. Res. Dev., vol. 55, no. 9, pp. 1853–1870, 2018.
[10]
R. Xin, J. Zhang, and Y. Shao, Complex network classification with convolutional neural network, Tsinghua Science and Technology, vol. 25, no. 4, pp. 447–457, 2020.
[11]
S. S. Adebola, L. A. Gil-Alana, and G. Madigu, Gold prices and the cryptocurrencies: Evidence of convergence and cointegration, Phys. A: Stat. Mech. Appl., vol. 523, pp. 1227–1236, 2019.
[12]
Z. Wei, P. Wan, L. Xiao, and D. Shen, The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average, Phys. A: Stat. Mech. Appl., vol. 510, pp. 658–670, 2018.
[13]
A. Sward, I. Vecna, and F. Stonedahl, Data insertion in Bitcoin’s blockchain, Ledger, vol. 3, pp. 1–23, 2018.
[14]
M. S. Mahmud, J. Z. Huang, S. Salloum, T. Z. Emara, and K. Sadatdiynov, A survey of data partitioning and sampling methods to support big data analysis, Big Data Mining and Analytics, vol. 3, no. 2, pp. 85–101, 2020.
[15]
S. Hong and H. Kim, Analysis of Bitcoin exchange using relationship of transactions and addresses, in Proc. 21st Int. Conf. Advanced Communication Technology (ICACT), Pyeongchang, Korea, 2019, pp. 67–70.
[16]
R. Galici, L. Ordile, M. Marchesi, A. Pinna, and R. Tonelli, Applying the ETL process to blockchain data. Prospect and findings, Information, vol. 11, no. 4, p. 204, 2020.
[17]
C. Kinkeldey, J. D. Fekete, and P. Isenberg, BitConduite: Visualizing and analyzing activity on the Bitcoin network, in Proc. 19th Eurographics Conf. Visualization, Barcelona, Spain, 2017, pp. 25–27.
[18]
M. Spagnuolo, F. Maggi, and S. Zanero, BitIodine: Extracting intelligence from the Bitcoin network, in Proc. 18th Int. Conf. Financial Cryptography and Data Security, Christ Church, Barbados, 2014, pp. 457–468.
[19]
D. Kondor, M. Pósfai, I. Csabai, and G. Vattay, Do the rich get richer? An empirical analysis of the Bitcoin transaction network, PLoS One, vol. 9, no. 2, p. e86197, 2014.
[20]
B. Zheng, L. Zhu, M. Shen, X. J. Du, and M. Guizani, Identifying the vulnerabilities of Bitcoin anonymous mechanism based on address clustering, Sci. China Inf. Sci., vol. 63, no. 3, p. 132101, 2020.
[21]
B. Zheng, L. Zhu, M. Shen, X. Du, J. Yang, F. Gao, Y. Li, C. Zhang, S. Liu, and S. Yin, Malicious Bitcoin transaction tracing using incidence relation clustering, in Proc. 9th Int. Conf. Mobile Networks and Management, Melbourne, Australia, 2017, pp. 313–323.
[22]
J. Liang, L. Li, W. Chen, and D. Zeng, Targeted addresses identification for Bitcoin with network representation learning, in Proc. 2019 IEEE Intelligence and Security Informatics, Shenzhen, China, 2019, pp. 158–160.
[23]
P. Tasca, A. Hayes, and S. Liu, The evolution of the Bitcoin economy: Extracting and analyzing the network of payment relationships, J. Risk Finance, vol. 19, no. 2, pp. 94–126, 2018.
[24]
D. Di Francesco Maesa, A. Marino, and L. Ricci, Uncovering the Bitcoin blockchain: An analysis of the full users graph, in Proc. 2016 IEEE Int. Conf. Data Science and Advanced Analytics (DSAA), Montreal, Canada, 2016, pp. 537–546.
[25]
S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker, and S. Savage, A fistful of Bitcoins: Characterizing payments among men with no names, in Proc. 2013 Conf. Internet Measurement Conf., Barcelona, Spain, 2013, pp. 127–140.
[26]
F. Zola, J. L. Bruse, M. Eguimendia, M. Galar, and R. O. Urrutia, Bitcoin and cybersecurity: Temporal dissection of blockchain data to unveil changes in entity behavioral patterns, Appl. Sci., vol. 9, no. 23, p. 5003, 2019.
[27]
M. Fleder, M. S. Kester, and S. Pillai, Bitcoin transaction graph analysis, arXiv preprint arXiv: 1502.01657, 2015.
[28]
H. Sun, N. Ruan, and H. Liu, Ethereum analysis via node clustering, in Proc. 13th Int. Conf. Network and System Security, Sapporo, Japan, 2019, pp. 114–129.
[29]
T. Chen, Z. Li, Y. Zhu, J. Chen, X. Luo, J. C. S. Lui, X. Lin, and X. Zhang, Understanding ethereum via graph analysis, ACM Trans. Internet Technol., vol. 20, no. 2, p. 18, 2020.
[30]
X. T. Lee, A. Khan, S. S. Gupta, Y. H. Ong, and X. Liu, Measurements, analyses, and insights on the entire ethereum blockchain network, in Proc. Web Conf. 2020, Taipei, China, 2020, pp. 155&166.
[31]
S. Ferretti and G. D’Angelo, On the ethereum blockchain structure: A complex networks theory perspective, Concurr. Comput.: Pract. Exp., vol. 32, no. 12, p. e5493, 2020.
[32]
D. Lin, J. Wu, Q. Yuan, Z. Zheng, Modeling and understanding ethereum transaction records via a complex network approach, IEEE Trans. Circuits Syst. II: Express Briefs, vol. 67, no. 11, pp. 2737–2741, 2020.
[33]
D. Y. Huang, K. Levchenko, and A. C. Snoeren, Estimating profitability of alternative cryptocurrencies (short paper), in Proc. 22nd Int. Conf. Financial Cryptography and Data Security, Nieuwpoort, Belgium, 2018, pp, 409–419.
[34]
T. Chen, Z. Li, Y. Zhang, X. Luo, A. Chen, K. Yang, B. Hu, T. Zhu, S. Deng, T. Hu, et al., DataEther: Data exploration framework for ethereum, in Proc. 39th Int. Conf. Distributed Computing Systems (ICDCS), Dallas, TX, USA, 2019, pp. 1369–1380.
[35]
Y. Li, U. Islambekov, C. Akcora, E. Smirnova, Y. R. Gel, and M. Kantarcioglu, Dissecting ethereum blockchain analytics: What we learn from topology and geometry of the ethereum graph?, in Proc. 2020 SIAM Int. Conf. Data Mining, Cincinnati, OH, USA, 2020, pp. 523–531.
[36]
S. Farrugia, J. Ellul, and G. Azzopardi, Detection of illicit accounts over the Ethereum blockchain, Expert Syst. Appl., vol. 150, p. 113318, 2020.
[37]
D. Lin, J. Wu, Q. Yuan, and Z. Zheng, T-EDGE: Temporal WEighted MultiDiGraph embedding for ethereum transaction network analysis, Front. Phys., vol. 8, p. 204, 2020.
[38]
Q. Bai, C. Zhang, Y. Xu, X. Chen, and X. Wang, Poster: Evolution of ethereum: A temporal graph perspective, in Proc. 2020 IFIP Networking Conf. (Networking), Paris, France, 2020, pp. 652–654.
[39]
D. Guo, J. Dong, and K. Wang, Graph structure and statistical properties of Ethereum transaction relationships, Inf. Sci., vol. 492, pp. 58–71, 2019.
[40]
M. Poongodi, A. Sharma, V. Vijayakumar, V. Bhardwaj, A. P. Sharma, R. Iqbal, and R. Kumar, Prediction of the price of Ethereum blockchain cryptocurrency in an industrial finance system, Comput. Electr. Eng., vol. 81, p. 106527, 2020.
[41]
J. Tigani and S. Naidu, Google BigQuery Analytics. Indianapolis, IN, USA: Wiley, 2014.
[42]
W. Zheng, Z. Zheng, H. N. Dai, X. Chen, and P. Zheng, XBlock-EOS: Extracting and exploring blockchain data from EOSIO, Inf. Process. Manage., vol. 58, no. 3, p. 102477, 2021.
[43]
P. Zheng, Z. Zheng, J. Wu, and H. N. Dai, XBlock-ETH: Extracting and exploring blockchain data from ethereum, IEEE Open J. Comput. Soc., vol. 1, pp. 95–106, 2020.
[44]
H. L. Mao, Z. Wu, M. He, J. Q. Tang, and M. Shen, Heuristic approaches based clustering of Bitcoin addresses, (in Chinese), J. Beijing Univ. Posts Telecomm., vol. 41, no. 2, pp. 27–31, 2018.
[45]
L. T. Leong, Snapshot samplings of the Bitcoin transaction network and analysis of cryptocurrency growth, arXiv preprint, arXiv: 2003.06068, 2020.
[46]
J. Liang, L. Li, and D. Zeng, Evolutionary dynamics of cryptocurrency transaction networks: An empirical study, PLoS One, vol. 13, no. 8, p. e0202202, 2018.
[47]
M. Lischke and B. Fabian, Analyzing the Bitcoin network: The first four years, Future Internet, vol. 8, no. 1, p. 7, 2016.
[48]
A. P. Motamed and B. Bahrak, Quantitative analysis of cryptocurrencies transaction graph, Appl. Netw. Sci., vol. 4, no. 1, p. 131, 2019.
[49]
A. Baumann, B. Fabian, and M. Lischke, Exploring the Bitcoin network, in Proc. 10th Int. Conf. Web Information Systems and Technologies, Barcelona, Spain, 2014, pp. 369–374.
[50]
W. Chen, T. Zhang, Z. Chen, Z. Zheng, and Y. Lu, Traveling the token world: A graph analysis of ethereumERC20 token ecosystem, in Proc. Web Conf. 2020, Taipei, China, 2020, pp. 1411–1421.
[51]
D. Di Francesco Maesa, A. Marino, and L. Ricci, An analysis of the Bitcoin users graph: Inferring unusual behaviours, in Complex Networks & Their Applications V, H. Cherifi, S. Gaito, W. Quattrociocchi, and A. Sala, eds. Cham, Germany: Springer, 2016, pp. 749–760.
[52]
X. F. Wang, X. Li, and G. R. Chen, Network Science: An Introduction, (in Chinese), Beijing, China: Higher Education Press, 2012.
[53]
A. Kumar, A. Kumar, P. Nerurkar, M. R. Ghalib, A. Shankar, Z. Wen, and X Qi, Empirical Analysis of Bitcoin network (2016-2020), in Proc. 2020 IEEE/CIC Int. Conf. Communications in China, Chongqing, China, 2020, pp. 96–101.
[54]
I. Alqassem, I. Rahwan, and D. Svetinovic, The anti-social system properties: Bitcoin network data analysis, IEEE Trans. Syst., Man, Cybernetics: Syst., vol. 50, no. 1, pp. 21–31, 2020.
[55]
WalletExplorer, https://www.walletexplorer.com/info, 2021.
[58]
H. Kalodner, M. Möser, K. Lee, S. Goldfeder, M. Plattner, A. Chator, and A. Narayanan, BlockSci: Design and applications of a blockchain analysis platform, in Proc. 29th USENIX Conf. Security Symp., Berkeley, CA, USA, 2017, p. 153.
[59]
Blockchain.info, http://blockchain.info/, 2021.
[60]
Chainalysis, https://www.chainalysis.com/, 2021.
[62]
G. Di Battista, V. Di Donato, M. Patrignani, M. Pizzonia, V. Roselli, and R. Tamassia, Bitconeview: Visualization of flows in the Bitcoin transaction graph, in Proc. 2015 IEEE Symp. Visualization for Cyber Security (VizSec), Chicago, IL, USA, 2015, pp. 1–8.
[63]
X. Yue, X. Shu, X. Zhu, X. Du, Z. Yu, D. Papadopoulos, and S. Liu, BitExTract: Interactive visualization for extracting Bitcoin exchange intelligence, IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 162–171, 2019.
[64]
F. Oggier, S. Phetsouvanh, and A. Datta, BiVA: Bitcoin network visualization & analysis, in Proc. 2018 IEEE Int. Conf. Data Mining Workshops (ICDMW), Singapore, 2018.
[65]
Y. Boshmaf, H. Al Jawaheri, and M. Al Sabah, BlockTag: Design and Applications of a Tagging System for Blockchain Analysis, in ICT Systems Security and Privacy Protection, G. Dhillon, F. Karlsson, K. Hedström, and A. Zúquete, eds. Cham, Germany: Springer, 2019, pp. 299–313.
[66]
Etherscan, https://cn.etherscan.com/, 2021.
[67]
W. Chen, J. Wu, Z. Zheng, C. Chen, and Y. Zhou, Market manipulation of Bitcoin: Evidence from mining the Mt. Gox transaction network, in Proc. IEEE INFOCOM 2019IEEE Conf. Computer Communications, Paris, France, 2019, pp. 964–972.
[68]
E. Brinckman, A. Kuehlkamp, J. Nabrzyski, and I. J. Taylor, Techniques and applications for crawling, ingesting and analyzing blockchain data, in Proc. 2019 Int. Conf. Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 2019, pp. 717–722.
[69]
Q. Hou, M. Han, and Z. Cai, Survey on data analysis in social media: A practical application aspect, Big Data Min. Anal., vol. 3, no. 4, pp. 259–279, 2020.
[70]
D. Ron and A. Shamir, Quantitative analysis of the full Bitcoin transaction graph, in Proc. 17th Int. Conf. Financial Cryptography and Data Security, Okinawa, Japan, 2013, pp. 6–24.
[71]
S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker, and S. A. Savage, A fistful of bitcoins: Characterizing payments among men with no names, Commun. ACM, vol. 59, no. 4, pp. 86–93, 2016.
[72]
J. S. Wang, Z. M. Lü, Z. N. Zhao, and H. W. Zhang, Address incremental clustering method for visual analysis of blockchain transaction, (in Chinese), Comput. Eng., vol. 46, no. 8, pp. 14–20, 2020.
[73]
F. Victor, Address clustering heuristics for ethereum, in Proc. 24th Int. Conf. Financial Cryptography and Data Security, Kota Kinabalu, Malaysia, 2020, pp. 617–633.
[74]
J. V. Monaco, Identifying Bitcoin users by transaction behavior, in Proc. SPIE 9457, Biometric and Surveillance Technology for Human and Activity Identification XII, Baltimore, MD, USA, 2015, p. 945704.
[75]
F. Chen, H. Wan, H. Cai, and G. Cheng, Machine Learning in/for blockchain: Future and challenges, Can. J. Stat., vol. 49, no. 4, pp. 1364–1382, 2021.
[76]
J. Zhu, P. Liu, and L. He, Mining information on Bitcoin network data, in Proc. 2017 IEEE Int. Conf. Internet of Things (Ithings) and IEEE Green Computing and Communications (Greencom) and IEEE Cyber, Physical and Social Computing (Cpscom) and IEEE Smart Data (Smartdata), Exeter, UK, 2017, pp. 999–1003.
[77]
F. Bres, I. A. Seres, A. A. Benczr, and M. Quintyne-Collins, Blockchain is watching you: Profiling and deanonymizing ethereum users, arXiv preprint arXiv: 2005.14051, 2020.
[78]
Y. Xing, Research on de-anonymization techniques of Bitcoin trading network, (in Chinese), Master dissertation, Southeast University, Nanjing, China, 2017.
[79]
A. Biryukov, D. Khovratovich, and I. Pustogarov, Deanonymisation of clients in bitcoin P2P network, in Proc. ACM SIGSAC Conf. Computer and Communications Security, Scottsdale, AZ, USA, 2014, pp. 15–29.
[80]
S. Kairam, N. H. Riche, S. Drucker, R. Fernandez, and J. Heer, Refinery: Visual exploration of large, heterogeneous networks through associative browsing, Comput. Graph. Forum, vol. 34, no. 3, pp. 301–310, 2015.
[81]
D. McGinn, D. Birch, D. Akroyd, M. Molina-Solana, Y. Guo, and W. J. Knottenbelt, Visualizing dynamic Bitcoin transaction patterns, Big Data, vol. 4, no. 2, pp. 109–119, 2016.
[82]
A. B. Turner, S. McCombie, and A. J. Uhlmann, Discerning payment patterns in Bitcoin from ransomwareattacks, J. Money Laund. Control, vol. 23, no. 3, pp. 545–589, 2020.
[83]
F. Zola, J. L. Bruse, M. Eguimendia, M. Galar, and R. O. Urrutia, Bitcoin and cybersecurity: Temporal dissection of blockchain data to unveil changes in entity behavioral patterns, Appl. Sci., vol. 9, no. 23, p. 5003, 2019.
[84]
Z. Guo and S. Zhang, Sparse deep nonnegative matrix factorization, Big Data Mining and Analytics, vol. 3, no. 1, pp. 13–28, 2020.
[85]
W. Shu and Y. H. Chuang, The perceived benefits of six-degree-separation social networks, Internet Res., vol. 21, no. 1, pp. 26–45, 2011.
[86]
X. F. Liu, X. J. Jiang, S. H. Liu, and C. K. Tse, Knowledge discovery in cryptocurrency transactions: A survey, IEEE Access, vol. 9, pp. 37229–37254, 2021.
[87]
D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature, vol. 393, no. 6684, pp. 440–442, 1998.
[88]
Y. Zhao, J. Liu, Q. Han, W. Zheng, and J. Wu, Exploring EOSIO via graph characterization, in Proc. 2nd Int. Conf. Blockchain and Trustworthy Systems, Dali, China, 2020, pp. 475–488.
[89]
G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and S. Kim, Continuous-time dynamic network embeddings, in Proc. Web Conf. 2018, Lyon, France, 2018, pp. 969–976.
[90]
S. Somin, G. Gordon, and Y. Altshuler, Network analysis of ERC20 tokens trading on ethereum blockchain, in Unifying Themes in Complex Systems IX, A. J. Morales, C. Gershenson, D. Braha, A. A. Minai, and Y. Bar-Yam, Eds. Cham, Germany: Springer, 2018, pp. 439–450.
[91]
D. Di Francesco Maesa, A. Marino, and L. Ricci, Detecting artificial behaviours in the Bitcoin users graph, Online Soc. Netw. Media, vols. 3&4, pp. 63–74, 2017.
[92]
D. Di Francesco Maesa, A. Marino, and L. Ricci, Data-driven analysis of Bitcoin properties: Exploiting the users graph, Int. J. Data Sci. Anal., vol. 6, no. 1, pp. 63–80, 2018.
[93]
H. H. S. Yin, K. Langenheldt, M. Harlev, R. R. Mukkamala, and R. Vatrapu, Regulating cryptocurrencies: A supervised machine learning approach to de-anonymizing the Bitcoin blockchain, J. Manage. Inf. Syst., vol. 36, no. 1, pp. 37–73, 2019.
[94]
V. G. Reyes-Macedo, M. Salinas-Rosales, and G. G. Garcia, A method for blockchain transactions analysis, IEEE Lat. Am. Trans., vol. 17, no. 7, pp. 1080–1087, 2019.
[95]
J. C. Pan, D. M. Han, F. Z. Guo, W. T. Zheng, J. H. Yu, and W. Chen, Visual exploration of topological structure for Bitcoin trading network, (in Chinese), J. Softw., vol. 30, no. 10, pp. 3017–3025, 2019.
[96]
P. Nerurkar, D. Patel, Y. Busnel, R. Ludinard, S. Kumari, and M. K. Khan, Dissecting Bitcoin blockchain: Empirical analysis of Bitcoin network (2009–2020), J. Netw. Comput. Appl., vol. 177, p. 102940, 2021.
[97]
N. Gandal, J. T. Hamrick, T. Moore, and T. Oberman, Price manipulation in the Bitcoin ecosystem, J. Monetary Econ., vol. 95, pp. 86–96, 2018.
[98]
D. Ermilov, M. Panov, and Y. Yanovich, Automatic Bitcoinaddress clustering, in Proc. 16th IEEE Int. Conf. Machine Learning and Applications (ICMLA), Cancun, Mexico, 2017, pp. 461–466.
[99]
A. Di Luzio, A. Mei, and J. Stefa, Consensus robustness and transaction de-anonymization in the ripple currency exchange system, in Proc. 39th Int. Conf. Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 2017, pp. 140–150.
[100]
F. Gao, L. Zhu, K. Gai, C. Zhang, and S. Liu, Achieving a covert channel over an open blockchain network, IEEE Netw., vol. 34, no. 2, pp. 6–13, 2020.
[101]
Z. Wang, C. Wang, X. Ye, J. Pei, and B. Li, Propagation history ranking in social networks: A causality-based approach, Tsinghua Science and Technology, vol. 25, no. 2, pp. 161–179, 2020.
[102]
W. Chen, Z. Zheng, E. C. H. Ngai, P. Zheng, and Y. Zhou, Exploiting blockchain data to detect smart Ponzi schemes on ethereum, IEEE Access, vol. 7, pp. 37575–37586, 2019.
[103]
W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, and Y. Zhou, Detecting Ponzi schemes on ethereum: Towards healthier blockchain technology, in Proc. 2018 World Wide Web Conf., Lyon, France, 2018, pp. 1409–1418.
[104]
M. Bartoletti, S. Carta, T. Cimoli, and R. Saia, Dissecting Ponzi schemes on Ethereum: Identification, analysis, and impact, Future Gener. Comput. Syst., vol. 102, pp. 259–277, 2020.
[105]
Y. Hu, S. Seneviratne, K. Thilakarathna, K. Fukuda, and A. Seneviratne, Characterizing and detecting money laundering activities on the Bitcoin network, arXiv preprint arXiv: 1912.12060, 2019.
[106]
S. Ranshous, C. A. Joslyn, S. Kreyling, K. Nowak, N. F. Samatova, C. L. West, and S. Winters, Exchange pattern mining in the Bitcoin transaction directed hypergraph, in Proc. 2017 Int. Conf. on Financial Cryptography and Data Security, Sliema, Malta, 2017, pp. 248–263.
[107]
L. Yang, X. Dong, S. Xing, J. Zheng, X. Gu, and X. Song. An abnormal transaction detection mechanim on Bitcoin. in Proc. 2019 Int. Conf. Networking and Network Applications (NaNA), Daegu, Republic of Korea, 2019, pp. 452–457.
[108]
M. Shen, A. Q. Sang, L. H. Zhu, R. G. Sun, and C. Zhang. Abnormal transaction behavior recognition based on motivation analysis in blockchain digital currency. Chin. J. Comput., vol. 44, no. 1, pp. 193–208, 2021.
Tsinghua Science and Technology
Pages 176-206
Cite this article:
Song W, Zhang W, Wang J, et al. Blockchain Data Analysis from the Perspective of Complex Networks: Overview. Tsinghua Science and Technology, 2023, 28(1): 176-206. https://doi.org/10.26599/TST.2021.9010080

1312

Views

279

Downloads

4

Crossref

2

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 27 August 2021
Revised: 21 October 2021
Accepted: 22 October 2021
Published: 21 July 2022
© The author(s) 2023.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return