958
Views
142
Downloads
10
Crossref
7
WoS
9
Scopus
0
CSCD
The pooling operation is used in graph classification tasks to leverage hierarchical structures preserved in data and reduce computational complexity. However, pooling shrinkage discards graph details, and existing pooling methods may lead to the loss of key classification features. In this work, we propose a residual convolutional graph neural network to tackle the problem of key classification features losing. Particularly, our contributions are threefold: (1) Different from existing methods, we propose a new strategy to calculate sorting values and verify their importance for graph classification. Our strategy does not only use features of simple nodes but also their neighbors for the accurate evaluation of its importance. (2) We design a new graph convolutional layer architecture with the residual connection. By feeding discarded features back into the network architecture, we reduce the probability of losing critical features for graph classification. (3) We propose a new method for graph-level representation. The messages for each node are aggregated separately, and then different attention levels are assigned to each node and merged into a graph-level representation to retain structural and critical information for classification. Our experimental results show that our method leads to state-of-the-art results on multiple graph classification benchmarks.
The pooling operation is used in graph classification tasks to leverage hierarchical structures preserved in data and reduce computational complexity. However, pooling shrinkage discards graph details, and existing pooling methods may lead to the loss of key classification features. In this work, we propose a residual convolutional graph neural network to tackle the problem of key classification features losing. Particularly, our contributions are threefold: (1) Different from existing methods, we propose a new strategy to calculate sorting values and verify their importance for graph classification. Our strategy does not only use features of simple nodes but also their neighbors for the accurate evaluation of its importance. (2) We design a new graph convolutional layer architecture with the residual connection. By feeding discarded features back into the network architecture, we reduce the probability of losing critical features for graph classification. (3) We propose a new method for graph-level representation. The messages for each node are aggregated separately, and then different attention levels are assigned to each node and merged into a graph-level representation to retain structural and critical information for classification. Our experimental results show that our method leads to state-of-the-art results on multiple graph classification benchmarks.
This work was supported by the National Natural Science Foundation of China (No. 62072335) and the Tianjin Science and Technology Program (No. 19PTZWHZ00020).
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).