[1]

J. C. Cheng, Y. L. Li, J. L. Wang, L. Yu, and S. J. Wang, Exploiting effective facial patches for robust gender recognition, *Tsinghua Sci. Technol.*, vol. 24, no. 3, pp. 333-345, 2019.

[2]

F. K. Gustafsson, M. Danelljan, and T. B. Schon, Evaluating scalable Bayesian deep learning methods for robust computer vision, presented at the 2020 IEEE/CVF Conf. Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 2020, pp. 318-319.

[3]

B. Liu, S. J. Tang, X. G. Sun, Q. Y. Chen, J. X. Cao, J. Z. Luo, and S. S. Zhao, Context-aware social media user sentiment analysis, *Tsinghua Science and Technology*, vol. 25, no. 4, pp. 528-541, 2020.

[4]

Z. Q. Peng, H. Z. Song, B. H. Kang, O. B. Moctard, M. He, and X. H. Zheng, Automatic textual knowledge extraction based on paragraph constitutive relations, presented at the 6th Int. Conf. Systems and Informatics (ICSAI), Shanghai, China, 2019, pp. 527-532.

[5]

M. Al-Ayyoub, A. Nuseir, K. Alsmearat, Y. Jararweh, and B. Gupta, Deep learning for Arabic NLP: A survey, *J. Comput. Sci.*, vol. 26, pp. 522-531, 2018.

[6]

M. Farooq, F. Hussain, N. K. Baloch, F. R. Raja, H. Yu, and Y. B. Zikria, Impact of feature selection algorithm on speech emotion recognition using deep convolutional neural network, *Sensors*, vol. 20, no. 21, p. 6008, 2020.

[7]

Y. Bengio, Y. LeCun, and U. de Montréal, Scaling learning algorithms towards AI, in *Large-Scale Kernel Machines*, L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, eds. Cambridge, MA, USA: MIT Press, 2007, pp. 1-41.

[8]

T. Ching, D. S. Himmelstein, B. K. Beaulieu-Jones, A. A. Kalinin, B. T. Do, G. P. Way, E. Ferrero, P. M. Agapow, M. Zietz, M. M. Hoffman, et al., Opportunities and obstacles for deep learning in biology and medicine, *J. Roy. Soc. Interface*, vol. 15, no. 141, p. 20170387, 2018.

[9]

Y. Gurovich, Y. Hanani, O. Bar, G. Nadav, N. Fleischer, D. Gelbman, L. Basel-Salmon, P. M. Krawitz, S. B. Kamphausen, M. Zenker, et al., Identifying facial phenotypes of genetic disorders using deep learning, *Nat. Med.*, vol. 25, no. 1, pp. 60-64, 2019.

[10]

W. J. Liu, G. Q. Wu, F. J. Ren, and X. Kang, DFF-ResNet: An insect pest recognition model based on residual networks, *Big Data Mining and Analytics*, vol. 3, no. 4, pp. 300-310, 2020.

[11]

S. H. Wang, C. C. Liu, X. Gao, H. T. Qu, and W. Xu, Session-based fraud detection in online e-commerce transactions using recurrent neural networks, presented at the European Conf. Machine Learning and Knowledge Discovery in Databases, Skopje, Macedonia, 2017, pp. 241-252.

[12]

A. S. Sheikh, R. Guigourès, E. Koriagin, Y. K. Ho, R. Shirvany, R. Vollgraf, and U. Bergmann, A deep learning system for predicting size and fit in fashion e-commerce, in Proc. 13th ACM Conf. Recommender Systems, Copenhagen, Denmark, 2019, pp. 110-118.

[13]

Z. Yang, Y. S. Zhang, B. H. Guo, B. Y. Zhao, and Y. F. Dai, Deepcredit: Exploiting user cickstream for loan risk prediction in p2p lending, in Proc. 12th Int. Conf. Web and Social Media, ICWSM 2018, Stanford, CA, USA, 2018, pp. 444-453.

[14]

Y. J. Wang, Y. Yao, H. H. Tong, F. Xu, and J. Lu, A brief review of network embedding, *Big Mining and Analytics*, vol. 2, no. 1, pp. 35-47, 2019.

[15]

Z. Q. Liu, C. C. Chen, L. F. Li, J. Zhou, X. L. Li, L. Song, and Y. Qi, GeniePath: Graph neural networks with adaptive receptive paths, *Proc. AAAI Conf. Artif. Intell.*, vol. 33, no. 1, pp. 4424-4431, 2019.

[16]

Z. Q. Zhang, J. Y. Cai, Y. D. Zhang, and J. Wang, Learning hierarchy-aware knowledge graph embeddings for link prediction, *Proc. AAAI Conf. Artif. Intell.*, vol. 34, no. 3, pp. 3065-3072, 2020.

[17]

W. W. Gu, F. Gao, R. Q. Li, and J. Zhang, Learning universal network representation via link prediction by graph convolutional neural network, *Journal of Social Computing*, vol. 2, no. 1, pp. 43-51, 2021.

[18]

K. H. Zhang, T. P. Li, S. W. Shen, B. Liu, J. Chen, and Q. S. Liu, Adaptive graph convolutional network with attention graph clustering for co-saliency detection, presented at the 2020 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 9047-9056.

[19]

L. X. Xie, X. Chen, K. F. Bi, L. H. Wei, Y. H. Xu, Z. S. Chen, L. F. Wang, A. Xiao, J. L. Chang, X. P. Zhang, et al., Weight-sharing neural architecture search: A battle to shrink the optimization gap, arXiv preprint arXiv: 2008.01475, 2020.

[20]

M. Nunes and G. L. Pappa, Neural architecture search in graph neural networks, presented at the 9th Brazilian Conf. Intelligent Systems, Rio Grande, Brazil, 2020, pp. 302-317.

[21]

Z. W. Zhang, X. Wang, and W. W. Zhu, Automated machine learning on graphs: A survey, arXiv preprint arXiv: 2103.00742, 2021.

[22]

K. X. Zhou, Q. Q. Song, X. Huang, and X. Hu, Auto-GNN: Neural architecture search of graph neural networks, arXiv preprint arXiv: 1909.03184, 2019.

[23]

M. Shi, D. A. Wilson, X. Q. Zhu, Y. Huang, Y. Zhuang, J. X. Liu, and Y. F. Tang, Evolutionary architecture search for graph neural networks, arXiv preprint arXiv: 2009.10199, 2020.

[24]

J. X. You, Z. T. Ying, and J. Leskovec, Design space for graph neural networks, in Proc. 34th Conf. Neural Information Processing Systems, Vancouver, Canada, 2020, pp. 17009-17021.

[25]

A. Sperduti and A. Starita, Supervised neural networks for the classification of structures, *IEEE Trans. Neural Netw.*, vol. 8, no. 3, pp. 714-735, 1997.

[26]

M. Gori, G. Monfardini, and F. Scarselli, A new model for learning in graph domains, in Proc. IEEE Int. Joint Conf. Neural Networks, Montreal, Canada, 2005, pp. 729-734.

[27]

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, The graph neural network model, *IEEE Trans. Neural Netw.*, vol. 20, no. 1, pp. 61-80, 2009.

[28]

Z. H. Wu, S. R. Pan, F. W. Chen, G. D. Long, C. Q. Zhang, and P. S. Yu, A comprehensive survey on graph neural networks, *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 32, no. 1, pp. 4-24, 2021.

[29]

Y. L. Zhang, B. Wu, Y. Liu, and J. N. Lv, Local community detection based on network motifs, *Tsinghua Science and Technology*, vol. 24, no. 6, pp. 716-727, 2019.

[30]

F. M. Bianchi, D. Grattarola, and C. Alippi, Spectral clustering with graph neural networks for graph pooling, in Proc. 37th Int. Conf. Machine Learning, Vienna, Austria, 2020, pp. 874-883.

[31]

A. Micheli, Neural network for graphs: A contextual constructive approach, *IEEE Trans. Neural Netw.*, vol. 20, no. 3, pp. 498-511, 2009.

[32]

H. Peng, H. F. Wang, B. W. Du, M. Z. A. Bhuiyan, H. Y. Ma, J. W. Liu, L. H. Wang, Z. Y. Yang, L. F. Du, S. Z. Wang, et al., Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting, *Inform. Sci.*, vol. 521, pp. 277-290, 2020.

[33]

M. Niepert, M. Ahmed, and K. Kutzkov, Learning convolutional neural networks for graphs, in Proc. 33rd Int. Conf. Machine Learning, New York, NY, USA, 2016, pp. 2014-2023.

[34]

B. Mohar, The laplacian spectrum of graphs, in *Graph Theory, Combinatorics, and Applications*, Y. Alavi, G. Chartrand, O. R. Oellermann, and A. J. Schwenk, eds. New York, NY, USA: John Wiley and Sons, Inc., 1991, pp. 871-898.

[35]

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, Neural message passing for quantum chemistry, in Proc. 34th Int. Conf. Machine Learning, Sydney, Australia, 2017, pp. 1263-1272.

[36]

T. N. Kipf and M. Welling, Semi-supervised classification with graph convolutional networks, presented at the 5th Int. Conf. Learning Representations, Toulon, France, 2017, pp. 1263-1272.

[37]

K. Xu, W. H. Hu, J. Leskovec, and S. Jegelka, How powerful are graph neural networks? presented at the 7th Int. Conf. Learning Representations, New Orleans, LA, USA, 2019, pp. 826-842.

[38]

P. Velikovi, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, Graph attention networks, presented at the 6th Int. Conf. Learning Representations, Vancouver, Canada, 2018, pp. 10903-10914.

[39]

E. Ranjan, S. Sanyal, and P. Talukdar, ASAP: Adaptive structure aware pooling for learning hierarchical graph representations, *Proc. AAAI Conf. Artif. Intell.*, vol. 34, no. 4, pp. 5470-5477, 2020.

[40]

X. J. Qi, R. J. Liao, J. Y. Jia, S. Fidler, and R. Urtasun, 3D graph neural networks for RGBD semantic segmentation, presented at the 2017 IEEE Int. Conf. Computer Vision (ICCV), Venice, Italy, 2017, pp. 5209-5218.

[41]

C. Huang, H. C. Xu, Y. Xu, P. Dai, L. H. Xia, M. Y. Lu, L. F. Bo, H. Xing, X. P. Lai, and Y. F. Ye, Knowledge-aware coupled graph neural network for social recommendation, *Proc. AAAI Conf. Artif. Intell.*, vol. 35, no. 5, pp. 4115-4122, 2021.

[42]

W. P. Song, Z. P. Xiao, Y. F. Wang, L. Charlin, M. Zhang, and J. Tang, Session-based social recommendation via dynamic graph attention networks, in Proc. 12th ACM Int. Conf. Web Search and Data Mining, Melbourne, Australia, 2019, pp. 555-563.

[43]

J. Zhang, Y. F. Wang, Z. Y. Yuan, and Q. Jin, Personalized real-time movie recommendation system: Practical prototype and evaluation, *Tsinghua Science and Technology*, vol. 25, no. 2, pp. 180-191, 2020.

[44]

Y. Gao, H. Yang, P. Zhang, C. Zhou, and Y. Hu, GraphNAS: Graph neural architecture search with reinforcement learning, arXiv preprint arXiv: 1904.09981, 2019.

[45]

G. C. Williams and D. C. Williams, Natural selection of individually harmful social adaptations among sibs with special reference to social insects, *Evolution*, vol. 11, no. 1, pp. 32-39, 1957.

[46]

Y. Gao, H. Yang, P. Zhang, C. Zhou, and Y. Hu, Graph neural architecture search, in Proc. 29th Int. Joint Conf. Artificial Intelligence, Yokohama, Japan, 2020, pp. 1403-1409.

[47]

H. Zhao, L. N. Wei, and Q. M. Yao, Simplifying architecture search for graph neural network, arXiv preprint arXiv: 2008.11652, 2020.

[48]

Y. M. Li and I. King, Autograph: Automated graph neuralnetwork, presented at the 27 th Int. Conf. Neural Information Processing, Bangkok, Thailand, 2020, pp. 189-201.

[49]

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, Algorithms for hyper-parameter optimization, in Proc. 24th Int. Conf. Neural Information Processing Systems, Granada, Spain, 2011, pp. 2546-2554.

[50]

M. Yoon, T. Gervet, B. Hooi, and C. Faloutsos, Autonomous graph mining algorithm search with best speed/accuracy trade-off, presented at the 2020 IEEE Int. Conf. Data Mining (ICDM), Sorrento, Italy, 2020, pp. 751-760.

[51]

L. Page, S. Brin, R. Motwani, and T. Winograd, *The PageRank Citation Ranking: Bringing Order to the Web*. Palo Alto, CA, USA: Stanford InfoLab, 1999.

[52]

H. X. Liu, K. Simonyan, and Y. M. Yang, DARTS: Differentiable architecture search, presented at the 7th Int. Conf. Learning Representations, New Orleans, LA, USA, 2019, pp. 9055-9067.

[53]

S. R. Xie, H. H. Zheng, C. X. Liu, and L. Lin, SNAS: Stochastic neural architecture search, presented at the 7th Int. Conf. Learning Representations, New Orleans, LA, USA, 2019.

[54]

Y. R. Zhao, D. Wang, X. T. Gao, R. D. Mullins, P. Liò, and M. Jamnik, Probabilistic dual network architecture search on graphs, arXiv preprint arXiv: 2003.09676, 2020.

[55]

E. Jang, S. X. Gu, and B. Poole, Categorical reparameterization with gumbel-softmax, presented at the 5th Int. Conf. Learning Representations, Toulon, France, 2017, pp. 1144-1156.

[56]

H. Zhao, Q. M. Yao, and W. W. Tu, Search to aggregate neighborhood for graph neural network, presented at the IEEE 37th Int. Conf. Data Engineering (ICDE), Chania, Greece, 2021, pp. 552-563.

[57]

Y. H. Ding, Q. M. Yao, and T. Zhang, Propagation model search for graph neural networks, arXiv preprint arXiv: 2010.03250, 2020.

[58]

K. Tu, J. X. Ma, P. Cui, J. Pei, and W. W. Zhu, AutoNE: Hyperparameter optimization for massive network embedding, in Proc. 25th ACM SIGKDD Int. Conf. Knowledge Discovery & Data Mining, Anchorage, AK, USA, 2019, pp. 216-225.

[59]

Y. X. Li, Z. A. Wen, Y. H. Wang, and C. Xu, One-shot graph neural architecture search with dynamic search space, *Proc. AAAI Conf. Artif. Intell.*, vol. 35, no. 10, pp. 8510-8517, 2021.

[60]

S. F. Cai, L. Li, J. C. Deng, B. C. Zhang, Z. J. Zha, L. Su, and Q. M. Huang, Rethinking graph neural architecture search from message-passing, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 6657-6666.

[61]

J. Zhou, G. Q. Cui, S. D. Hu, Z. Y. Zhang, C. Yang, Z. Y. Liu, L. F. Wang, C. C. Li, and M. S. Sun, Graph neural networks: A review of methods and applications, *AI Open*, vol. 1, pp. 57-81, 2020.

[62]

K. Xu, C. T. Li, Y. L. Tian, T. Sonobe, K. I. Kawarabayashi, and S. Jegelka, Representation learning on graphs with jumping knowledge networks, in Proc. 35th Int. Conf. Machine Learning, Stockholm, Sweden, 2018, pp. 5453-5462.

[63]

H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, Efficient neural architecture search via parameters sharing, in Proc.35th Int. Conf. Machine Learning, Stockholm, Sweden, 2018, pp. 4095-4104.

[64]

H. P. Zhou, M. H. Yang, J. Wang, and W. Pan, BayesNAS: A Bayesian approach for neural architecture search, in Proc. 36th Int. Conf. Machine Learning, Long Beach, CA, USA, 2019, pp. 7603-7613.

[65]

A. Noy, N. Nayman, T. Ridnik, N. Zamir, S. Doveh, I. Friedman, R. Giryes, and L. Zelnik, ASAP: Architecture search, anneal and prune, in Proc. 23rd Int. Conf. Artificial Intelligence and Statistics, Palermo, Italy, 2020, pp. 493-503.

[66]

K. H. Lai, D. C. Zha, K. X. Zhou, and X. Hu, Policy-GNN: Aggregation optimization for graph neural networks, in Proc. 26thACM SIGKDD Int. Conf. Knowledge Discovery & Data Mining, Virtual Event, CA, USA, 2020, pp. 461-471.

[67]

Z. C. Guo, X. Y. Zhang, H. Y. Mu, W. Heng, Z. C. Liu, Y. C. Wei, and J. Sun, Single path one-shot neural architecture search with uniform sampling, in Proc. 16th European Conf. Computer Vision, Glasgow, UK, 2020, pp. 544-560.

[68]

W. Wen, H. X. Liu, Y. R. Chen, H. Li, G. Bender, and P. J. Kindermans, Neural predictor for neural architecture search, in Proc. 16th European Conf. Computer Vision, Glasgow, UK, 2020, pp. 660-676.

[69]

X. W. Zheng, R. R. Ji, Q. Wang, Q. X. Ye, Z. G. Li, Y. H. Tian, and Q. Tian, Rethinking performance estimation in neural architecture search, in Proc. 2020 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 11353-11362.

[70]

A. Klein, S. Falkner, J. T. Springenberg, and F. Hutter, Learning curve prediction with Bayesian neural networks, in Proc. 5th Int. Conf. Learning Representations, Toulon, France, 2017, pp. 2001-2016.

[71]

P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad, Collective classification in network data, *AI Magazine*, vol. 29, no. 3, pp. 93-106, 2008.

[72]

L. Tang and H. Liu, Relational learning via latent social dimensions, in Proc. 15th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Paris, France, 2009, pp. 817-826.

[73]

P. Mernyei and C. Cangea, Wiki-CS: A wikipedia-based benchmark for graph neural networks, arXiv preprint arXiv: 2007.02901, 2020.

[74]

M. Zitnik and J. Leskovec, Predicting multicellular function through multi-layer tissue networks, *Bioinformatics*, vol. 33, no. 14, pp. i190-i198, 2017.

[75]

K. M. Borgwardt, C. S. Ong, S. Schönauer, S. V. N. Vishwanathan, A. J. Smola, and H. P. Kriegel, Protein function prediction via graph kernels, *Bioinformatics*, vol. 21, no. Suppl 1, pp. i47-i56, 2005.

[76]

I. Schomburg, A. Chang, C. Ebeling, M. Gremse, C. Heldt, G. Huhn, and D. Schomburg, Brenda, the enzyme database: Updates and major new developments, *Nucleic Acids Res.*, vol. 32, pp. D431-D433, 2004.

[77]

P. D. Dobson and A. J. Doig, Distinguishing enzyme structures from non-enzymes without alignments, *J. Mol. Biol.*, vol. 330, no. 4, pp. 771-783, 2003.

[78]

M. Fey, J. E. Lenssen, F. Weichert, and H. Müller, SplineCNN: Fast geometric deep learning with continuous B-spline kernels, in Proc. 2018 IEEE/CVF Conf. Computer Vision and Pattern Recognition (CPVR), Salt Lake City, UT, USA, 2018, pp. 869-877.

[79]

C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe, Weisfeiler and leman go neural: Higher-order graph neural networks, *Proc. AAAI Conf. Artif. Intell.*, vol. 33, no. 1, pp. 4602-4609, 2019.

[80]

F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, Graph neural networks with convolutional ARMA filters, arXiv preprint arXiv: 1901.01343, 2021.

[81]

M. J. Wang, D. Zheng, Z. H. Ye, Q. Gan, M. F. Li, X. Song, J. J. Zhou, C. Ma, L. F. Yu, Y. Gai, et al., Deep graph library: A graph-centric, highly-performant package for graph neural networks, arXiv preprint arXiv: 1909.01315, 2020.