Journal Home > Volume 27 , Issue 3

The Ultra-WideBand (UWB) technique, which offers good energy efficiency, flexible data rate, and high ranging accuracy, has recently been recognized as a revived wireless technology for short distance communication. This paper presents a brief overview of two UWB techniques, covering Impulse-Radio UWB (IR-UWB) and Frequency-Modulation UWB (FM-UWB) methods. The link margin enhancement technique, Very-WideBand (VWB), and power consumption reducing technique, chirp UWB, are also introduced. Then, several potential applications of IR-UWB with transceiver architectures are addressed, including high data rate proximity communication and secure wireless connectivity. With fine-ranging and energy-efficient communication features, the UWB wireless technology is highly promising for secure mobile Internet of Things (IoT) applications.


menu
Abstract
Full text
Outline
About this article

Overview of Ultra-Wideband Transceivers—System Architectures and Applications

Show Author's information Bowen WangHaixin SongWoogeun Rhee( )Zhihua Wang
School of Integrated Circuits, Tsinghua University, Beijing 100084, China

Abstract

The Ultra-WideBand (UWB) technique, which offers good energy efficiency, flexible data rate, and high ranging accuracy, has recently been recognized as a revived wireless technology for short distance communication. This paper presents a brief overview of two UWB techniques, covering Impulse-Radio UWB (IR-UWB) and Frequency-Modulation UWB (FM-UWB) methods. The link margin enhancement technique, Very-WideBand (VWB), and power consumption reducing technique, chirp UWB, are also introduced. Then, several potential applications of IR-UWB with transceiver architectures are addressed, including high data rate proximity communication and secure wireless connectivity. With fine-ranging and energy-efficient communication features, the UWB wireless technology is highly promising for secure mobile Internet of Things (IoT) applications.

Keywords: Ultra-WideBand (UWB), Impulse Radio UWB (IR-UWB), Frequency-Modulation UWB (FM-UWB), Very-WideBand (VWB), transceivers, wireless security, mobile Internet of Things (IoT)

References(32)

[1]
L. Q. Yang and G. B. Giannakis, Ultra-wideband communications: An idea whose time has come, IEEE Signal Process. Mag., vol. 21, no. 6, pp. 26-54, 2004.
[2]
S. L. Geng, X. C. Chen, W. Rhee, J. Kim, D. Kim, and Z. H. Wang, A power-efficient all-digital IR-UWB transmitter with configurable pulse shaping by utilizing a digital amplitude modulation technique, in Proc. 2012 IEEE Asian Solid State Circuits Conf. (A-SSCC), Kobe, Japan, 2012, pp. 85-88.
DOI
[3]
S. L. Geng, W. Rhee, and Z. H. Wang, A pulse-shaped power amplifier with dynamic bias switching for IR-UWB transmitters, in Proc. 2012 IEEE Int. Symp. Circuits and Systems (ISCAS), Seoul, Republic of Korea, 2012, pp. 2529-2532.
DOI
[4]
Q. Shi, S. Zhao, X. Cui, M. Lu, and M. Jia, Anchor self-localization algorithm based on UWB ranging and inertial measurements, Tsinghua Science and Technology, vol. 24, no. 6, pp. 728-737, 2019.
[5]
T. Terada, R. Fujiwara, G. Ono, T. Norimatsu, T. Nakagawa, M. Miyazaki, K. Suzuki, K. Yano, A. Maeki, Y. Ogata, et al., Intermittent operation control scheme for reducing power consumption of UWB-IR receiver, IEEE J. Solid-St. Circ., vol. 44, no. 10, pp. 2702-2710, 2009.
[6]
M. U. Nair, Y. J. Zheng, C. W. Ang, Y. Lian, X. J. Yuan, and C. H. Heng, A low SIR impulse-UWB transceiver utilizing chirp FSK in 0.18 μm CMOS, IEEE J. Solid-St. Circ., vol. 45, no. 11, pp. 2388-2403, 2010.
[7]
D. Liu, X. W. Ni, R. R. Zhou, W. Rhee, and Z. H. Wang, A 0.42-mW 1-Mb/s 3- to 4-GHz transceiver in 0.18-μm CMOS with flexible efficiency, bandwidth, and distance control for IoT applications, IEEE J. Solid-St. Circ., vol. 52, no. 6, pp. 1479-1494, 2017.
[8]
J. F. M. Gerrits, M. H. L. Kouwenhoven, P. R. van der Meer, J. R. Farserotu, and J. R. Long, Principles and limitations of ultra-wideband FM communications systems, EURASIP J. Adv. Signal Process., vol. 2005, p. 189150, 2005.
[9]
B. Zhou, R. He, J. Qiao, J. H. Liu, W. Rhee, and Z. H. Wang, A low data rate FM-UWB transmitter with-based sub-carrier modulation and quasi-continuous frequency-locked loop, in Proc. 2010 IEEE Asian Solid-State Circuits Conf. , Beijing, China, 2010, pp. 1-4.
[10]
B. Zhou, H. Lv, M. Wang, J. H. Liu, W. Rhee, Y. M. Li, D. Kim, and Z. H. Wang, A 1 Mb/s 3.2-4.4 GHz reconfigurable FM-UWB transmitter in 0.18 μm CMOS, in Proc. 2011 IEEE Radio Frequency Integrated Circuits Symp., Baltimore, MD, USA, 2011, pp. 1-4.
DOI
[11]
F. Chen, Y. Li, D. Liu, W. Rhee, J. Kim, D. Kim, and Z. H. Wang, A 1 mW 1 Mb/s 7.75-to-8.25 GHz chirp-UWB transceiver with low peak-power transmission and fast synchronization capability, in Proc. 2014 IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 2014, pp. 162-163.
DOI
[12]
IEEE standard for low-rate wireless networks, https://ieeexplore.ieee.org/document/9144691, 2020.
[13]
X. Wang, Y. Yu, B. Busze, and H. W. Pflug, A meter-range UWB transceiver chipset for around-the-head audio streaming, in Proc. 2010 IEEE Int. Solid-State Circuits Conf. (ISSCC), .
DOI
[14]
Y. Park and D. D. Wentzloff, IR-UWB transmitters synthesized from standard digital library components, in Proc. 2010 IEEE Int. Symp. Circuits and Systems, Paris, France, 2010, pp. 3296-3299.
DOI
[15]
L. Wang, Y. X. Guo, Y. Lian, and C. H. Heng, 3-to-5GHz 4-channel UWB beamforming transmitter with 1 phase resolution through calibrated vernier delay line in 0.13 μm CMOS, in Proc. 2012 IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, 2012, pp. 444-446.
DOI
[16]
D. Lachartre, B. Denis, D. Morche, L. Ouvry, M. Pezzin, B. Piaget, J. Prouvee, and P. Vincent, A 1.1nJ/b 802.15.4a-compliant fully integrated UWB transceiver in 0.13 μm CMOS, in Proc. 2009 IEEE Int. Solid-State Circuits Conf.-Digest of Technical Papers, San Francisco, CA, USA, .
DOI
[17]
D. Liu, X. F. Liu, W. Rhee, and Z. H. Wang, A 7.6 mW 2 Gb/s proximity transmitter for smartphone-mirrored display applications, in Proc. 2015 IEEE Asian Solid-State Circuits Conf. (A-SSCC), Xiamen, China, 2015, pp. 1-4.
DOI
[18]
N. Van Helleputte, M. Verhelst, W. Dehaene, and G. Gielen, A reconfigurable, 130 nm CMOS 108 pJ/pulse, fully integrated IR-UWB receiver for communication and precise ranging, IEEE J. Solid-St. Circ., vol. 45, no. 1, pp. 69-83, 2010.
[19]
D. Morche, G. Masson, S. De Rivaz, F. Dehmas, S. Paquelet, A. Bisiaux, O. Fourquin, J. Gaubert, and S. Bourdel, Double-quadrature UWB receiver for wide-range localization applications with sub-cm ranging precision, IEEE J. Solid-St. Circ., vol. 48, no. 10, pp. 2351-2362, 2013.
[20]
H. X. Song, D. Liu, W. Rhee, and Z. H. Wang, A 6-8 GHz 200 MHz bandwidth 9-channel VWB transceiver with 8 frequency-hopping subbands, in Proc. 2018 IEEE Asian Solid-State Circuits Conf. (A-SSCC), Tainan, China, 2018, pp. 295-298.
DOI
[21]
J. F. M. Gerrits, H. Bonakdar, M. Detratti, E. Perez, M. Lobeira, Y. Zhao, Y. Dong, G. van Veenendaal, J. R. Long, J. R. Farserotu, et al., A 7.2-7.7 GHz FM-UWB transceiver prototype, in Proc. 2009 IEEE Int. Conf. Ultra-Wideband, Vancouver, Canada, 2009, pp. 580-585.
DOI
[22]
N. Saputra and J. R. Long, A short-range low data-rate regenerative FM-UWB receiver, IEEE Trans. Microw. Theory Tech., vol. 59, no. 4, pp. 1131-1140, 2011.
[23]
Y. Z. Dong, Y. Zhao, J. F. M. Gerrits, G. van Veenendaal, and J. R. Long, A 9 mW high band FM-UWB receiver front-end, in Proc. ESSCIRC 2008 - 34th European Solid-State Circuits Conf., Edinburgh, UK, 2008, pp. 302-305.
[24]
F. Chen, W. Zhang, W. Rhee, J. Kim, D. Kim, and Z. H. Wang, A 3.8-mW 3.5-4-GHz regenerative FM-UWB receiver with enhanced linearity by utilizing a wideband LNA and dual bandpass filters, IEEE Trans. Microw. Theory Tech., vol. 61, no. 9, pp. 3350-3359, 2013.
[25]
D. Liu, X. H. Huang, Z. D. Ding, H. X. Song, W. Rhee, and Z. H. Wang, A 26.6 mW 1 Gb/s dual-antenna wideband receiver with auto beam steering for secure proximity communications, in Proc. 2018 IEEE Custom Integrated Circuits Conf. (CICC), San Diego, CA, USA, 2018, pp. 1-4.
DOI
[26]
J. Ko and R. Gharpurey, A pulsed UWB transceiver in 65 nm CMOS with four-element beamforming for 1 Gbps meter-range WPAN applications, IEEE J. Solid-St. Circ., vol. 51, no. 5, pp. 1177-1187, 2016.
[27]
C. H. Hu, R. Khanna, J. Nejedlo, K. M. Hu, H. P. Liu, and P. Y. Chiang, A 90 nm-CMOS, 500 Mbps, 3-5 GHz fully-integrated IR-UWB transceiver with multipath equalization using pulse injection-locking for receiver phase synchronization, IEEE J. Solid-St. Circ., vol. 46, no. 5, pp. 1076-1088, 2011.
[28]
N. S. Kim and J. M. Rabaey, A high data-rate energy-efficient triple-channel UWB-based cognitive radio, IEEE J. Solid-St. Circ., vol. 51, no. 4, pp. 809-820, 2016.
[29]
G. Lee, J. Park, J. Jang, T. Jung, and T. W. Kim, An IR-UWB CMOS transceiver for high-data-rate, low-power, and short-range communication, IEEE J. Solid-St. Circ., vol. 54, no. 8, pp. 2163-2174, 2019.
[30]
H. X. Song, D. Liu, Y. N. Zhang, W. Rhee, and Z. H. Wang, A 6.5-8.1-GHz communication/ranging VWB transceiver for secure wireless connectivity with enhanced bandwidth efficiency and ΔΣ energy detection, IEEE J. Solid-St. Circ., vol. 55, no. 2, pp. 219-232, 2020.
[31]
H. X. Song, W. Rhee, and Z. H. Wang, A 6-8 GHz multichannel reconfigurable pulse-based transceiver with 3.5 ns processing latency and 1 cm ranging accuracy for secure wireless connectivity, in Proc. 2020 IEEE Custom Integrated Circuits Conf. (CICC), Boston, MA, USA, 2020, pp. 1-4.
DOI
[32]
H. X. Song, Z. D. Ding, W. Rhee, and Z. H. Wang, A secure TOF-based transceiver with low latency and sub-cm ranging for mobile authentication applications, in Proc. 2018 IEEE Radio Frequency Integrated Circuits Symp. (RFIC), Philadelphia, PA, USA, 2018, pp. 160-163.
DOI
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 01 March 2021
Revised: 29 June 2021
Accepted: 02 July 2021
Published: 13 November 2021
Issue date: June 2022

Copyright

© The author(s) 2022

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (No. 61774092).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return