AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

A Truncated SVD-Based ARIMA Model for Multiple QoS Prediction in Mobile Edge Computing

College of Economic and Management, Shandong University of Science and Technology, Qingdao 266590, China
Weifang Key Laboratory of Blockchain on Agricultural Vegetables, Weifang University of Science and Technology, Weifang 262700, China
School of Computer Science, Qufu Normal University, Rizhao 276826, China
Show Author Information

Abstract

In the mobile edge computing environments, Quality of Service (QoS) prediction plays a crucial role in web service recommendation. Because of distinct features of mobile edge computing, i.e., the mobility of users and incomplete historical QoS data, traditional QoS prediction approaches may obtain less accurate results in the mobile edge computing environments. In this paper, we treat the historical QoS values at different time slots as a temporal sequence of QoS matrices. By incorporating the compressed matrices extracted from QoS matrices through truncated Singular Value Decomposition (SVD) with the classical ARIMA model, we extend the ARIMA model to predict multiple QoS values simultaneously and efficiently. Experimental results show that our proposed approach outperforms the other state-of-the-art approaches in accuracy and efficiency.

References

[1]
International Data Corporation, Worldwide public cloud services spending forecast to double by 2019, according to IDC, https://www.businesswire.com/news/home/20160121005117/en/Worldwide-Public-Cloud-Services-Spending-Forecast-to-Double-by-2019-According-to-IDC, 2019.
[2]
G. E. P. Box and G. M. Jenkins, Some recent advances in forecasting and control: Part I, J. Roy. Statist. Soc. Ser. C (Appl. Statist.), vol. 17, no. 2, pp. 91-109, 1968.
[3]
C. H. Liu, S. C. H. Hoi, P. L. Zhao, and J. L. Sun, Online ARIMA algorithms for time series prediction, in Proc. 13th AAAI Conf. Artificial Intelligence, Phoenix, AZ, USA, 2016, pp. 1867-1873.
[4]
Q. Q. Shi, J. M. Yin, J. J. Cai, A. Cichocki, T. Yokota, L. Chen, M. X. Yuan, and J. Zeng, Block hankel tensor ARIMA for multiple short time series forecasting, Proc. AAAI Conf. Artif. Intell., vol. 34, no. 4, pp. 5758-5766, 2020.
[5]
S. G. Wang, Y. L. Zhao, L. Huang, J. L. Xu, and C. H. Hsu, QoS prediction for service recommendations in mobile edge computing, J. Parallel Distrib. Comput., vol. 127, pp. 134-144, 2019.
[6]
G. White, A. Palade, C. Cabrera, and S. Clarke, Autoencoders for QoS prediction at the edge, in Proc. of 2019 IEEE Int. Conf. Pervasive Computing and Communications, Kyoto, Japan, 2019, pp. 1-9.
[7]
Y. Y. Yin, L. Chen, Y. S. Xu, J. Wan, H. Zhang, and Z. D. Mai, QoS prediction for service recommendation with deep feature learning in edge computing environment, Mobile Netw. Appl., vol. 25, no. 2, pp. 391-401, 2020.
[8]
Y. W. Liu, A. X. Pei, F. Wang, Y. H. Yang, X. Y. Zhang, H. Wang, H. N. Dai, L. Y. Qi, and R. Ma, An attention-based category-aware GRU model for the next POI recommendation, Int. J. Intell. Syst., vol. 36, no. 7, pp. 3174-3189, 2021.
[9]
Y. Hu, Q. M. Peng, X. H. Hu, and R. Yang, Time aware and data sparsity tolerant web service recommendation based on improved collaborative filtering, IEEE Trans. Serv. Comput., vol. 8, no. 5, pp. 782-794, 2015.
[10]
L. Y. Qi, C. H. Hu, X. Y. Zhang, M. R. Khosravi, S. Sharma, S. N. Pang, and T. Wang, Privacy-aware data fusion and prediction with spatial-temporal context for smart city industrial environment, IEEE Trans. Ind. Inform., vol. 17, no. 6, pp. 4159-4167, 2021.
[11]
X. L. Fan, Y. K. Hu, R. S. Zhang, W. B. Chen, P. Brézillon, and X. L. Fan, Modeling temporal effectiveness for context-aware web services recommendation, in Proc. 2015 IEEE Int. Conf. Web Services, New York, NY, USA, 2015, pp. 225-232.
[12]
X. Y. Wang, J. K. Zhu, Z. B. Zheng, W. J. Song, Y. H. Shen, and M. R. Lyu, A spatial-temporal QoS prediction approach for time-aware web service recommendation, ACM Trans. Web, vol. 10, no. 1, p. 7, 2016.
[13]
X. Chen, Z. B. Zheng, X. D. Liu, Z. C. Huang, and H. L. Sun, Personalized QoS-aware web service recommendation and visualization, IEEE Trans. Serv. Comput., vol. 6, no. 1, pp. 35-47, 2013.
[14]
H. F. Sun, Z. B. Zheng, J. L. Chen, and M. R. Lyu, Personalized web service recommendation via normal recovery collaborative filtering, IEEE Trans. Serv. Comput., vol. 6, no. 4, pp. 573-579, 2013.
[15]
W. Lo, J. W. Yin, S. G. Deng, Y. Li, and Z. H. Wu, Collaborative web service QoS prediction with location-based regularization, in Proc. 2012 IEEE 19th Int. Conf. Web Services, Honolulu, HI, USA, 2012, pp. 464-471.
[16]
C. Y. Yu and L. P. Huang, A web service QoS prediction approach based on time- and location-aware collaborative filtering, Serv. Orient. Comput. Appl., vol. 10, no. 2, pp. 135-149, 2016.
[17]
L. Y. Qi, R. L. Wang, C. H. Hu, S. C. Li, Q. He, and X. L. Xu, Time-aware distributed service recommendation with privacy-preservation, Inform. Sci., vol. 480, pp. 354-364, 2019.
[18]
M. Godse, U. Bellur, and R. Sonar, Automating QoS based service selection, in Proc. 2010 IEEE Int. Conf. Web Services, Miami, FL, USA, 2010, pp. 534-541.
[19]
A. Amin, A. Colman, and L. Grunske, An approach to forecasting QoS attributes of web services based on ARIMA and GARCH models, in Proc. 2012 IEEE 19th Int. Conf. Web Services, Honolulu, HI, USA, 2012, pp. 74-81.
[20]
P. G. Jing, Y. T. Su, X. Jin, and C. Q. Zhang, High-order temporal correlation model learning for time-series prediction, IEEE Trans. Cybern., vol. 49, no. 6, pp. 2385-2397, 2019.
[21]
G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control. San Francisco, CA, USA: Holden-Day, 1976.
[22]
J. C. Gower and G. B. Dijksterhuis, Procrustes Problems. New York, NY, USA: Oxford University Press, 2004.
[23]
Y. L. Zhang, Z. B. Zheng, and M. R. Lyu, WSPred: A time-aware personalized QoS prediction framework for web services, in Proc. IEEE 22nd Int. Symp. Software Reliability Engineering, Hiroshima, Japan, 2011, pp. 210-219.
[24]
J. S. Breese, D. Heckerman, and C. Kadie, Empirical analysis of predictive algorithms for collaborative filtering, in Proc. 14th Conf. Uncertainty in Artificial Intelligence, Madison, WI, USA, 1998, pp. 43-52.
[25]
P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, GroupLens: An open architecture for collaborative filtering of netnews, in Proc. 1994 ACM Conf. Computer Supported Cooperative Work, Chapel Hill North, CA, USA, 1994, pp. 175-186.
[26]
A. Guezzaz, Y. Asimi, M. Azrour, and A. Asimi, Mathematical validation of proposed machine learning classifier for heterogeneous traffic and anomaly detection, Big Data Mining and Analytics, vol. 4, no. 1, pp. 18-24, 2021.
[27]
H. M. Huang, J. H. Lin, L. Y. Wu, B. Fang, Z. K. Wen, and F. C. Sun, Machine learning-based multi-modal information perception for soft robotic hands, Tsinghua Science and Technology, vol. 25, no. 2, pp. 255-269, 2020.
[28]
L. Wang, X. Y. Zhang, T. Wang, S. H. Wan, G. Srivastava, S. N. Pang, and L. Y. Qi, Diversified and scalable service recommendation with accuracy guarantee, IEEE Trans. Comput. Soc. Syst., .
[29]
J. Mabrouki, M. Azrour, G. Fattah, D. Dhiba, and S. El Hajjaji, Intelligent monitoring system for biogas detection based on the Internet of Things: Mohammedia, Morocco City landfill case, Big Data Mining and Analytics, vol. 4, no. 1, pp. 10-17, 2021.
[30]
L. Y. Qi, X. K. Wang, X. L. Xu, W. C. Dou, and S. C. Li, Privacy-aware cross-platform service recommendation based on enhanced locality-sensitive hashing, IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2, pp. 1145-1153, 2021.
[31]
N. Bhardwaj and P. Sharma, An advanced uncertainty measure using fuzzy soft sets: Application to decision-making problems, Big Data Mining and Analytics, vol. 4, no. 2, pp. 94-103, 2021.
[32]
Y. Khazbak, J. Y. Fan, S. C. Zhu, and G. H. Cao, Preserving personalized location privacy in ride-hailing service, Tsinghua Science and Technology, vol. 25, no. 6, pp. 743-757, 2020.
[33]
L. N. Wang, X. Y. Zhang, R. L. Wang, C. Yan, H. Z. Kou, and L. Y. Qi, Diversified service recommendation with high accuracy and efficiency, Knowl.-Based Syst., vol. 204, p. 106196, 2020.
[34]
Y. P. Fu, Y. S. Hou, Z. F. Wang, X. W. Wu, K. Z. Gao, and L. Wang, Distributed scheduling problems in intelligent manufacturing systems, Tsinghua Science and Technology, vol. 26, no. 5, pp. 625-645, 2021.
[35]
J. Mabrouki, M. Azrour, D. Dhiba, Y. Farhaoui, and S. E. Hajjaji, IoT-based data logger for weather monitoring using arduino-based wireless sensor networks with remote graphical application and alerts, Big Data Mining and Analytics, vol. 4, no. 1, pp. 25-32, 2021.
[36]
N. J. Chen, Z. Wang, R. X. He, J. H. Jiang, F. Cheng, and C. H. Han, Efficient scheduling mapping algorithm for row parallel coarse-grained reconfigurable architecture, Tsinghua Science and Technology, vol. 26, no. 5, pp. 724-735, 2021.
Tsinghua Science and Technology
Pages 315-324
Cite this article:
Yan C, Zhang Y, Zhong W, et al. A Truncated SVD-Based ARIMA Model for Multiple QoS Prediction in Mobile Edge Computing. Tsinghua Science and Technology, 2022, 27(2): 315-324. https://doi.org/10.26599/TST.2021.9010040

944

Views

114

Downloads

40

Crossref

31

Web of Science

41

Scopus

1

CSCD

Altmetrics

Received: 29 January 2021
Revised: 17 May 2021
Accepted: 30 May 2021
Published: 29 September 2021
© The author(s) 2022

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return