Journal Home > Volume 28 , Issue 1

Heavy doped n-type β-Ga 2O 3 (HD-Ga 2O 3) was obtained by employing Si ion implantation technology on unintentionally doped β-Ga 2O 3 single crystal substrates. To repair the Ga 2O 3 lattice damage and activate the Si after implantation, the implanted substrates were annealed at 950℃, 1000℃, and 1100℃, respectively. High-resolution X-ray diffraction and high-resolution transmission electron microscopy show that the ion-implanted layer has high lattice quality after high-temperature annealing at 1000℃. The minimum specific contact resistance is 9.2×10–5Ω·cm2, which is attributed to the titanium oxide that is formed at the Ti/Ga 2O 3 interface via rapid thermal annealing at 480℃. Based on these results, the lateral β-Ga 2O 3 diodes were prepared, and the diodes exhibit high forward current density and low specific on-resistance.


menu
Abstract
Full text
Outline
About this article

Investigation on n-Type (–201) β-Ga2O3 Ohmic Contact via Si Ion Implantation

Show Author's information Peipei Ma1,2Jun Zheng1,2( )Yabao Zhang1,2Zhi Liu1,2Yuhua Zuo1,2Buwen Cheng1,2
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Heavy doped n-type β-Ga 2O 3 (HD-Ga 2O 3) was obtained by employing Si ion implantation technology on unintentionally doped β-Ga 2O 3 single crystal substrates. To repair the Ga 2O 3 lattice damage and activate the Si after implantation, the implanted substrates were annealed at 950℃, 1000℃, and 1100℃, respectively. High-resolution X-ray diffraction and high-resolution transmission electron microscopy show that the ion-implanted layer has high lattice quality after high-temperature annealing at 1000℃. The minimum specific contact resistance is 9.2×10–5Ω·cm2, which is attributed to the titanium oxide that is formed at the Ti/Ga 2O 3 interface via rapid thermal annealing at 480℃. Based on these results, the lateral β-Ga 2O 3 diodes were prepared, and the diodes exhibit high forward current density and low specific on-resistance.

Keywords: ohmic contact, ion implantation, β-Ga2O3, annealing activation

References(24)

[1]
S. J. Pearton, J. C. Yang, P. H. Cary IV, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, A review of Ga2O3 materials, processing, and devices, Appl. Phys. Rev., vol. 5, no. 1, p. 011301, 2018.
[2]
H. P. Zhang, L. Yuan, X. Y. Tang, J. C. Hu, J. W. Sun, Y. M. Zhang, Y. M. Zhang, and R. X. Jia, Progress of ultra-wide bandgap Ga2O3 semiconductor materials in power MOSFETs, IEEE Trans. Power Electron., vol. 35, no. 5, pp. 5157–5179, 2020.
[3]
J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, and J. Rebollo, A survey of wide bandgap power semiconductor devices, IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2155–2163, 2014.
[4]
W. X. Mu, Z. T. Jia, Y. R. Yin, Q. Q. Hu, Y. Li, B. Y. Wu, J. Zhang, and X. T. Tao, High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method, J. Alloys Compd., vol. 714, pp. 453–458, 2017.
[5]
H. F. Mohamed, C. T. Xia, Q. L. Sai, H. Y. Cui, M. Y. Pan, and H. J. Qi, Growth and fundamentals of bulk β-Ga2O3 single crystals, J. Semicond., vol. 40, no. 1, p. 011801, 2019.
[6]
Y. B. Wang, W. H. Xu, T. G. You, F. W. Mu, H. D. Hu, Y. Liu, H. Huang, T. Suga, G. Q. Han, X. Ou, et al., β-Ga2O3 MOSFETs on the Si substrate fabricated by the ion-cutting process, Sci. China Phys. Mech. Astron., vol. 63, no. 7, p. 277311, 2020.
[7]
Y. B. Wang, W. H. Xu, G. Q. Han, T. G. You, F. W. Mu, H. D. Hu, Y. Liu, X. C. Zhang, H. Huang, T. Suga, et al., Temperature-dependent characteristics of Schottky barrier diode on heterogeneous β-Ga2O3(–201)-Al2O3-Si substrate,J. Phys. D: Appl. Phys., vol. 54, no. 3, p. 034004, 2021.
[8]
W. H. Xu, Y. B. Wang, T. G. You, X. Ou, G. Q. Han, H. D. Hu, S. B. Zhang, F. W. Mu, T. Suga, Y. H. Zhang, et al., First demonstration of waferscale heterogeneous integration of Ga2O3 MOSFETs on SiC and Si substrates by ion-cutting process, in Proc. of IEEE Int. Electron Devices Meeting, San Francisco, CA, USA, 2019, pp. 12.5.1–12.5.4.
[9]
Y. B. Wang, W. H. Xu, G. Q. Han, T. G. You, F. W. Mu, H. D. Hu, Y. Liu, X. C. Zhang, H. Huang, T. Suga, et al., Channel properties of Ga2O3-on-SiC MOSFETs, IEEE Trans. Electron Devices, vol. 68, no. 3, pp. 1185–1189, 2021.
[10]
S. Sharma, K. Zeng, S. Saha, and U. Singisetti, Field-plated lateral Ga2O3 MOSFETs with polymer passivation and 8.03 kV breakdown voltage, IEEE Electron Device Lett., vol. 41, no. 6, pp. 836–839, 2020.
[11]
K. Tetzner, E. B. Treidel, O. Hilt, A. Popp, S. B. Anooz, G. Wagner, A. Thies, K. Ickert, H. Gargouri, and J. Würfl, Lateral 1.8 kV β-Ga2O3 MOSFET with 155 MW/cm2 power figure of merit, IEEE Electron Device Lett., vol. 40, no. 9, pp. 1503–1506, 2019.
[12]
H. Zhou, K. Maize, G. Qiu, A. Shakouri, and P. D. Ye, β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect, Appl. Phys. Lett., vol. 111, no. 9, p. 092102, 2017.
[13]
Y. J. Lv, H. Y. Liu, X. Y. Zhou, Y. G. Wang, X. B. Song, Y. C. Cai, Q. L. Yan, C. L. Wang, S. X. Liang, J. C. Zhang, et al., Lateral β-Ga2O3 MOSFETs with high power figure of merit of 277 MW/cm2, IEEE Electron Device Lett., vol. 41, no. 4, pp. 537–540, 2020.
[14]
H. Dong, H. W. Xue, Q. M. He, Y. Qin, G. Z. Jian, S. B. Long, and M. Liu, Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material, J. Semicond., vol. 40, no. 1, p. 011802, 2019.
[15]
Z. Z. Hu, H. Zhou, Q. Feng, J. C. Zhang, C. F. Zhang, K. Dang, Y. C. Cai, Z. Q. Feng, Y. Y. Gao, X. W. Kang, et al., Field-plated lateral β-Ga2O3 schottky barrier diode with high reverse blocking voltage of more than 3 kV and high DC power figure-of-merit of 500 MW/cm2, IEEE Electron Device Lett., vol. 39, no. 10, pp. 1564–1567, 2018.
[16]
Z. Z. Hu, H. Zhou, K. Dang, Y. C. Cai, Z. Q. Feng, Y. Y. Gao, Q. Feng, J. C. Zhang, and Y. Hao, Lateral β-Ga2O3 schottky barrier diode on sapphire substrate with reverse blocking voltage of 1.7 kV, IEEE J. Electron Devices Soc., vol. 6, pp. 815–820, 2018.
[17]
K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, Si ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance ohmic contacts, Appl. Phys. Exp., vol. 6, no. 8, p. 086502, 2013.
[18]
P. H. Carey IV, J. C. Yang, F. Ren, D. C. Hays, S. J. Pearton, S. Jang, A. Kuramata, and I. I. Kravchenko, Ohmic contacts on n-type β-Ga2O3 using AZO/Ti/Au, AIP Adv., vol. 7, no. 9, p. 095313, 2017.
[19]
K. Zeng, J. S. Wallace, C. Heimburger, K. Sasaki, A. Kuramata, T. Masui, L. A. Gardella, and U. Singisetti, Ga2O3 MOSFETs using spin-on-glass source/drain doping technology, IEEE Electron Device Lett., vol. 38, no. 4, pp. 513–516, 2017.
[20]
S. W. Jang, S. W. Jung, K. Beers, J. C. Yang, F. Ren, A. Kuramata, S. J. Pearton, and K. H. Baik, A comparative study of wet etching and contacts on (–201) and (010) oriented β-Ga2O3, J. Alloys Compd., vol. 731, pp. 118–125, 2018.
[21]
B. Fu, Z. T. Jia, W. X. Mu, Y. R. Yin, J. Zhang, and X. T. Tao, A review of β-Ga2O3 single crystal defects, their effects on device performance and their formation mechanism. J. Semicond., vol. 40, no. 1, p. 011804, 2019.
[22]
M. H. Wong, C. H. Lin, A. Kuramata, S. Yamakoshi, H. Murakami, Y. Kumagai, and M. Higashiwaki, Acceptor doping of β-Ga2O3 by Mg and N ion implantations, Appl. Phys. Lett., vol. 113, no. 10, p. 102103, 2018.
[23]
S. Nakagomi and Y. Kokubun, Cross-sectional TEM imaging of β-Ga2O3 thin films formed on c-plane and a-plane sapphire substrates, Phys. Status Solidi A, vol. 210, no. 9, pp. 1738–1744, 2013.
[24]
T. Akita, M. Okumura, K. Tanaka, S. Tsubota, and M. Haruta, Analytical TEM observation of Au and Ir deposited on rutile TiO2, J. Electron Microsc., vol. 52, no. 2, pp. 119–124, 2003.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 22 April 2021
Accepted: 28 May 2021
Published: 21 July 2022
Issue date: February 2023

Copyright

© The author(s) 2023.

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China (No. 2018YFB2200500), the National Natural Science Foundation of China (No. 62050073, 62090054, and 61975196), and the Key Research Program of Frontier Sciences, CAS (No. QYZDY-SSW-JSC022).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return